23 resultados para appliances


Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the recent development of advanced metering infrastructure, real-time pricing (RTP) scheme is anticipated to be introduced in future retail electricity market. This paper proposes an algorithm for a home energy management scheduler (HEMS) to reduce the cost of energy consumption using RTP. The proposed algorithm works in three subsequent phases namely real-time monitoring (RTM), stochastic scheduling (STS) and real-time control (RTC). In RTM phase, characteristics of available controllable appliances are monitored in real-time and stored in HEMS. In STS phase, HEMS computes an optimal policy using stochastic dynamic programming (SDP) to select a set of appliances to be controlled with an objective of the total cost of energy consumption in a house. Finally, in RTC phase, HEMS initiates the control of the selected appliances. The proposed HEMS is unique as it intrinsically considers uncertainties in RTP and power consumption pattern of various appliances. In RTM phase, appliances are categorized according to their characteristics to ease the control process, thereby minimizing the number of control commands issued by HEMS. Simulation results validate the proposed method for HEMS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Social marketers and governments have often targeted hard to reach or vulnerable groups (Gordon et al., 2006) such as young adults and low income earners. Past research has shown that low-income earners are often at risk of poor health outcomes and diminished lifestyle (Hampson et al., 2009; Scott et al., 2012). Young adults (aged 18 to 35) are in a transition phase of their life where lifestyle preferences are still being formed and are thus a useful target for long-term sustainable change. An area of focus for all levels of government is the use of energy with an aim to reduce consumption. There is little research to date that combines both of these groups and in particular in the context of household energy usage. Research into financially disadvantaged consumers is challenging the notion that that low income consumer purchasing and usage of products and services is based upon economic status (Sharma et al., 2012). Prior research shows higher income earners view items such as televisions and computers as necessities rather than non-essential (Karlsson et al., 2004). Consistent with this is growing evidence that low income earners purchase non-essential, energy intensive electronic appliances such as multiple big screen TV sets and additional refrigerators. With this in mind, there is a need for knowledge about how psychological and economic factors influence the energy consumption habits (e.g. appliances on standby power, leaving appliances turned on, running multiple devices at one time) of low income earners. Thus, our study sought to address the research question of: What are the factors that influence young adult low-income earners energy habits?

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction of dynamic pricing in present retail market, considerably affects customers with an increased cost of energy consumption. Therefore, customers are enforced to control their loads according to price variation. This paper proposes a new technique of Home Energy Management, which helps customers to minimize their cost of energy consumption by appropriately controlling their loads. Thermostatically Controllable Appliances (TCAs) such as air conditioner and water heater are focused in this study, as they consume more than 50% of the total household energy consumption. The control process includes stochastic dynamic programming, which incorporated uncertainties in price and demand variation. It leads to an accurate selection of appliance settings. It is followed by a real time control of selected appliances with its optimal settings. Temperature set points of TCAs are adjusted based on price droop which is a reflection of actual cost of energy consumption. Customer satisfaction is maintained within limits using constraint optimization. It is showed that considerable energy savings is achieved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Provision of network infrastructure to meet rising network peak demand is increasing the cost of electricity. Addressing this demand is a major imperative for Australian electricity agencies. The network peak demand model reported in this paper provides a quantified decision support tool and a means of understanding the key influences and impacts on network peak demand. An investigation of the system factors impacting residential consumers’ peak demand for electricity was undertaken in Queensland, Australia. Technical factors, such as the customers’ location, housing construction and appliances, were combined with social factors, such as household demographics, culture, trust and knowledge, and Change Management Options (CMOs) such as tariffs, price,managed supply, etc., in a conceptual ‘map’ of the system. A Bayesian network was used to quantify the model and provide insights into the major influential factors and their interactions. The model was also used to examine the reduction in network peak demand with different market-based and government interventions in various customer locations of interest and investigate the relative importance of instituting programs that build trust and knowledge through well designed customer-industry engagement activities. The Bayesian network was implemented via a spreadsheet with a tick box interface. The model combined available data from industry-specific and public sources with relevant expert opinion. The results revealed that the most effective intervention strategies involve combining particular CMOs with associated education and engagement activities. The model demonstrated the importance of designing interventions that take into account the interactions of the various elements of the socio-technical system. The options that provided the greatest impact on peak demand were Off-Peak Tariffs and Managed Supply and increases in the price of electricity. The impact in peak demand reduction differed for each of the locations and highlighted that household numbers, demographics as well as the different climates were significant factors. It presented possible network peak demand reductions which would delay any upgrade of networks, resulting in savings for Queensland utilities and ultimately for households. The use of this systems approach using Bayesian networks to assist the management of peak demand in different modelled locations in Queensland provided insights about the most important elements in the system and the intervention strategies that could be tailored to the targeted customer segments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The built environment is a major contributor to the world’s carbon dioxide emissions, with a considerable amount of energy being consumed in buildings due to heating, ventilation and air-conditioning, space illumination, use of electrical appliances, etc., to facilitate various anthropogenic activities. The development of sustainable buildings seeks to ameliorate this situation mainly by reducing energy consumption. Sustainable building design, however, is a complicated process involving a large number of design variables, each with a range of feasible values. There are also multiple, often conflicting, objectives involved such as the life cycle costs and occupant satisfaction. One approach to dealing with this is through the use of optimization models. In this paper, a new multi-objective optimization model is developed for sustainable building design by considering the design objectives of cost and energy consumption minimization and occupant comfort level maximization. In a case study demonstration, it is shown that the model can derive a set of suitable design solutions in terms of life cycle cost, energy consumption and indoor environmental quality so as to help the client and design team gain a better understanding of the design space and trade-off patterns between different design objectives. The model can very useful in the conceptual design stages to determine appropriate operational settings to achieve the optimal building performance in terms of minimizing energy consumption and maximizing occupant comfort level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ensuring adequate water supply to urban areas is a challenging task due to factors such as rapid urban growth, increasing water demand and climate change. In developing a sustainable water supply system, it is important to identify the dominant water demand factors for any given water supply scheme. This paper applies principal components analysis to identify the factors that dominate residential water demand using the Blue Mountains Water Supply System in Australia as a case study. The results show that the influence of community intervention factors (e.g. use of water efficient appliances and rainwater tanks) on water demand are among the most significant. The result also confirmed that the community intervention programmes and water pricing policy together can play a noticeable role in reducing the overall water demand. On the other hand, the influence of rainfall on water demand is found to be very limited, while temperature shows some degree of correlation with water demand. The results of this study would help water authorities to plan for effective water demand management strategies and to develop a water demand forecasting model with appropriate climatic factors to achieve sustainable water resources management. The methodology developed in this paper can be adapted to other water supply systems to identify the influential factors in water demand modelling and to devise an effective demand management strategy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Diabetic foot ulcers (DFU) are a leading cause of diabetes-related hospitalisation and can be costly to manage without access to appropriate expert care. Within Queensland and indeed across many parts of Australia, there is an inequality in accessing specialist services for individuals with DFU. Recent National Health and Medical Research Council (NHMRC) diabetic foot guidelines recommend remote expert consultation with digital imaging should be made available to people with DFU to improve their clinical outcomes. Telemedicine appears to show promise in improving access to diabetic foot specialist services; however diabetic foot telemedicine models to date have relied upon videoconferencing, store and forward technology and/or customised appliances to obtain digital imagery which all require either expensive infrastructure or a timed reply to the request for advice. Whilst mobile phone advice services have been used with success in general diabetes management and telehealth services have improved diabetic foot outcomes, the rapid emergence in the use of mobile phones has established a need to review the role that various forms of telemedicine play in the management of DFU. The aim of this paper is to review traditional telemedicine modalities that have been used in the management of DFU and to compare that to new and innovative technology that are emerging. Process Studies investigating the management of DFU using various forms of telemedicine interventions will be included in this review. They include the use of videoconferencing technology, hand held digital still photography purpose built imaging devices and mobile phone imagery. Electronic databases (Pubmed, Medline and CINAHL) will be searched using broad MeSH terms and keywords that cover the intended area of interest. Findings It is anticipated that the results of this narrative review will provide delegates of the 2015 Australasian Podiatry Conference an insight into the types of emerging innovative diagnostic telemedicine technologies in the management of DFU against the backdrop of traditional and evidence based modalities. It is anticipated that the findings will drive further research in the area of mobile phone imagery and innovation in the management of DFU.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cool roof coatings have a beneficial impact on reducing the heat load of a range of building types, resulting in reduced cooling energy loads. This study seeks to understand the extent to which cool roof coatings could be used as a residential demand side management (DSM) strategy for retrofitting existing housing in a constrained network area in tropical Australia where peak electrical demand is heavily influenced by residential cooling loads. In particular this study seeks to determine whether simulation software used for building regulation purposes can provide networks with the ‘impact certainty’ required by their DSM principles. The building simulation method is supported by a field experiment. Both numerical and experimental data confirm reductions in total consumption (kWh) and energy demand (kW). The nature of the regulated simulation software, combined with the diverse nature of residential buildings and their patterns of occupancy, however, mean that simulated results cannot be extrapolated to quantify benefits to a broader distribution network. The study suggests that building data gained from regulatory simulations could be a useful guide for potential impacts of widespread application of cool roof coatings in this region. The practical realization of these positive impacts, however, would require changes to the current business model for the evaluation of DSM strategies. The study provides seven key recommendations that encourage distribution networks to think beyond their infrastructure boundaries, recognising that the broader energy system also includes buildings, appliances and people.