72 resultados para anaerobic microflora frozen
Resumo:
Iron (Fe) is the fourth most abundant element in the Earth’s crust. Excess Fe mobilization from terrestrial into aquatic systems is of concern for deterioration of water quality via biofouling and nuisance algal blooms in coastal and marine systems. Substantial Fe dissolution and transport involve alternate Fe(II) oxidation followed by Fe(III) reduction, with a diversity of Bacteria and Archaea acting as the key catalyst. Microbially-mediated Fe cycling is of global significance with regard to cycles of carbon (C), sulfur (S) and manganese (Mn). However, knowledge regarding microbial Fe cycling in circumneutral-pH habitats that prevail on Earth has been lacking until recently. In particular, little is known regarding microbial function in Fe cycling and associated Fe mobilization and greenhouse (CO2 and CH4, GHG) evolution in subtropical Australian coastal systems where microbial response to ambient variations such as seasonal flooding and land use changes is of concern. Using the plantation-forested Poona Creek catchment on the Fraser Coast of Southeast Queensland (SEQ), this research aimed to 1) study Fe cycling-associated bacterial populations in diverse terrestrial and aquatic habitats of a representative subtropical coastal circumneutral-pH (4–7) ecosystem; and 2) assess potential impacts of Pinus plantation forestry practices on microbially-mediated Fe mobilization, organic C mineralization and associated GHG evolution in coastal SEQ. A combination of wet-chemical extraction, undisturbed core microcosm, laboratory bacterial cultivation, microscopy and 16S rRNA-based molecular phylogenetic techniques were employed. The study area consisted primarily of loamy sands, with low organic C and dissolved nutrients. Total reactive Fe was abundant and evenly distributed within soil 0–30 cm profiles. Organic complexation primarily controlled Fe bioavailability and forms in well-drained plantation soils and water-logged, native riparian soils, whereas tidal flushing exerted a strong “seawater effect” in estuarine locations and formed a large proportion of inorganic Fe(III) complexes. There was a lack of Fe(II) sources across the catchment terrestrial system. Mature, first-rotation plantation clear-felling and second-rotation replanting significantly decreased organic matter and poorly crystalline Fe in well-drained soils, although variations in labile soil organic C fractions (dissolved organic C, DOC; and microbial biomass C, MBC) were minor. Both well-drained plantation soils and water-logged, native-vegetation soils were inhabited by a variety of cultivable, chemotrophic bacterial populations capable of C, Fe, S and Mn metabolism via lithotrophic or heterotrophic, (micro)aerobic or anaerobic pathways. Neutrophilic Fe(III)-reducing bacteria (FeRB) were most abundant, followed by aerobic, heterotrophic bacteria (heterotrophic plate count, HPC). Despite an abundance of FeRB, cultivable Fe(II)-oxidizing bacteria (FeOB) were absent in associated soils. A lack of links between cultivable Fe, S or Mn bacterial densities and relevant chemical measurements (except for HPC correlated with DOC) was likely due to complex biogeochemical interactions. Neither did variations in cultivable bacterial densities correlate with plantation forestry practices, despite total cultivable bacterial densities being significantly lower in estuarine soils when compared with well-drained plantation soils and water-logged, riparian native-vegetation soils. Given that bacterial Fe(III) reduction is the primary mechanism of Fe oxide dissolution in soils upon saturation, associated Fe mobilization involved several abiotic and biological processes. Abiotic oxidation of dissolved Fe(II) by Mn appeared to control Fe transport and inhibit Fe dissolution from mature, first-rotation plantation soils post-saturation. Such an effect was not observed in clear-felled and replanted soils associated with low SOM and potentially low Mn reactivity. Associated GHG evolution post-saturation mainly involved variable CO2 emissions, with low, but consistently increasing CH4 effluxes in mature, first-rotation plantation soil only. In comparison, water-logged soils in the riparian native-vegetation buffer zone functioned as an important GHG source, with high potentials for Fe mobilization and GHG, particularly CH4 emissions in riparian loam soils associated with high clay and crystalline Fe fractions. Active Fe–C cycling was unlikely to occur in lower-catchment estuarine soils associated with low cultivable bacterial densities and GHG effluxes. As a key component of bacterial Fe cycling, neutrophilic FeOB widely occurred in diverse aquatic, but not terrestrial, habitats of the catchment study area. Stalked and sheathed FeOB resembling Gallionella and Leptothrix were limited to microbial mat material deposited in surface fresh waters associated with a circumneutral-pH seep, and clay-rich soil within riparian buffer zones. Unicellular, Sideroxydans-related FeOB (96% sequence identity) were ubiquitous in surface and subsurface freshwater environments, with highest abundance in estuary-adjacent shallow coastal groundwater water associated with redox transition. The abundance of dissolved C and Fe in the groundwater-dependent system was associated with high numbers of cultivable anaerobic, heterotrophic FeRB, microaerophilic, putatively lithotrophic FeOB and aerobic, heterotrophic bacteria. This research represents the first study of microbial Fe cycling in diverse circumneutral-pH environments (terrestrial–aquatic, freshwater–estuarine, surface–subsurface) of a subtropical coastal ecosystem. It also represents the first study of its kind in the southern hemisphere. This work highlights the significance of bacterial Fe(III) reduction in terrestrial, and bacterial Fe(II) oxidation in aquatic catchment Fe cycling. Results indicate the risk of promotion of Fe mobilization due to plantation clear-felling and replanting, and GHG emissions associated with seasonal water-logging. Additional significant outcomes were also achieved. The first direct evidence for multiple biomineralization patterns of neutrophilic, microaerophilic, unicellular FeOB was presented. A putatively pure culture, which represents the first cultivable neutrophilic FeOB from the southern hemisphere, was obtained as representative FeOB ubiquitous in diverse catchment aquatic habitats.
Resumo:
Experimental results for a reactive non-buoyant plume of nitric oxide (NO) in a turbulent grid flow doped with ozone (O3) are presented. The Damkohler number (Nd) for the experiment is of order unity indicating the turbulence and chemistry have similar timescales and both affect the chemical reaction rate. Continuous measurements of two components of velocity using hot-wire anemometry and the two reactants using chemiluminescent analysers have been made. A spatial resolution for the reactants of four Kolmogorov scales has been possible because of the novel design of the experiment. Measurements at this resolution for a reactive plume are not found in the literature. The experiment has been conducted relatively close to the grid in the region where self-similarity of the plume has not yet developed. Statistics of a conserved scalar, deduced from both reactive and non-reactive scalars by conserved scalar theory, are used to establish the mixing field of the plume, which is found to be consistent with theoretical considerations and with those found by other investigators in non-reative flows. Where appropriate the reactive species means and higher moments, probability density functions, joint statistics and spectra are compared with their respective frozen, equilibrium and reaction-dominated limits deduced from conserved scalar theory. The theoretical limits bracket reactive scalar statistics where this should be so according to conserved scalar theory. Both reactants approach their equilibrium limits with greater distance downstream. In the region of measurement, the plume reactant behaves as the reactant not in excess and the ambient reactant behaves as the reactant in excess. The reactant covariance lies outside its frozen and equilibrium limits for this value of Vd. The reaction rate closure of Toor (1969) is compared with the measured reaction rate. The gradient model is used to obtain turbulent diffusivities from turbulent fluxes. Diffusivity of a non-reactive scalar is found to be close to that measured in non-reactive flows by others.
Resumo:
Chronic venous leg ulcers are a detrimental health issue plaguing our society, resulting in long term pain, immobility and decreased quality of life for a large proportion of sufferers. The frequency of these chronic wounds has led current research to focus on the wound environment to provide important information regarding the prolonged, fluctuated or static healing patterns of these wounds. Disruption to the normal wound healing process results in release of multiple factors in the wound environment that could correlate to wound chronicity. These biochemical factors can often be detected through non-invasively sampling chronic wound fluid (CWF) from the site of injury. Of note, whilst there are numerous studies comparing acute and chronic wound fluids, there have not been any reports in the literature employing a longitudinal study in order to track biochemical changes in wound fluid as patients transition from a non-healing to healed state. Initially the objective of this study was to identify biochemical changes in CWF associated with wound healing using a proteomic approach. The proteomic approach incorporated a multi-dimensional liquid chromatography fractionation technique coupled with mass spectrometry (MS) to enable identification of proteins present in lower concentrations in CWF. Not surprisingly, many of the proteins identified in wound fluid were acute phase proteins normally expressed during the inflammatory phase of healing. However, the number of proteins positively identified by MS was quite low. This was attributed to the diverse range in concentration of protein species in CWF making it challenging to detect the diagnostically relevant low molecular weight proteins. In view of this, SELDI-TOF MS was also explored as a means to target low molecular weight proteins in sequential patient CWF samples during the course of healing. Unfortunately, the results generated did not yield any peaks of interest that were altered as wounds transitioned to a healed state. During the course of proteomic assessment of CWF, it became evident that a fraction of non-proteinaceous compounds strongly absorbed at 280 nm. Subsequent analyses confirmed that most of these compounds were in fact part of the purine catabolic pathway, possessing distinctive aromatic rings and which results in high absorbance at 254 nm. The accumulation of these purinogenic compounds in CWF suggests that the wound bed is poorly oxygenated resulting in a switch to anaerobic metabolism and consequently ATP breakdown. In addition, the presence of the terminal purine catabolite, uric acid (UA), indicates that the enzyme xanthine oxidoreductase (XOR) catalyses the reaction of hypoxanthine to xanthine and finally to UA. More importantly, the studies provide evidence for the first time of the exogenous presence of XOR in CWF. XOR is the only enzyme in humans capable of catalysing the production of UA in conjunction with a burst of the highly reactive superoxide radical and other oxidants like H2O2. Excessive release of these free radicals in the wound environment can cause cellular damage disrupting the normal wound healing process. In view of this, a sensitive and specific assay was established for monitoring low concentrations of these catabolites in CWF. This procedure involved combining high performance liquid chromatography (HPLC) with tandem mass spectrometry and multiple reaction monitoring (MRM). This application was selective, using specific MRM transitions and HPLC separations for each analyte, making it ideal for the detection and quantitation of purine catabolites in CWF. The results demonstrated that elevated levels of UA were detected in wound fluid obtained from patients with clinically worse ulcers. This suggests that XOR is active in the wound site generating significant amounts of reactive oxygen species (ROS). In addition, analysis of the amount of purine precursors in wound fluid revealed elevated levels of purine precursors in wound fluid from patients with less severe ulcers. Taken together, the results generated in this thesis suggest that monitoring changes of purine catabolites in CWF is likely to provide valuable information regarding the healing patterns of chronic venous leg ulcers. XOR catalysis of purine precursors not only provides a method for monitoring the onset, prognosis and progress of chronic venous leg ulcers, but also provides a potential therapeutic target by inhibiting XOR, thus blocking UA and ROS production. Targeting a combination of these purinogenic compounds and XOR could lead to the development of novel point of care diagnostic tests. Therefore, further investigation of these processes during wound healing will be worthwhile and may assist in elucidating the pathogenesis of this disease state, which in turn may lead to the development of new diagnostics and therapies that target these processes.
Resumo:
This study, investigating 263 women undergoing trans-vaginal oocyte retrieval for in vitro fertilisation (IVF) found that microorganisms colonising follicular fluid contributed to adverse IVF (pre-implantation) and pregnancy (post-implantation) outcomes including poor quality embryos, failed pregnancy and early pregnancy loss (< 37 weeks gestation). Some microorganisms also showed in vitro growth patterns in liquid media that appeared to be enhanced by the hormonal stimulation protocol used for oocyte retrieval. Elaborated cytokines within follicular fluid were also associated with adverse IVF outcomes. This study is imperative because infertility affects 16% of the human population and the numbers of couples needing assistance continues to increase. Despite significant improvements in the technical aspects of assisted reproductive technologies (ART), the live birth rate has not increased proportionally. Overt genital tract infection has been associated with both infertility and adverse pregnancy outcomes (including miscarriage and preterm birth) as a direct result of the infection or the host response to it. Importantly, once inflammation had become established, medical treatment often failed to prevent these significant adverse outcomes. Current evaluations of fertility focus on the ovary as a site of steroid hormone production and ovulation. However, infertility as a result of subclinical colonisation of the ovary has not been reported. Furthermore, identification of the microorganisms present in follicular fluid and the local cytokine profile may provide clinicians with an early indication of the prognosis for IVF treatment in infertile couples, thus allowing antimicrobial treatment and/or counselling about possible IVF failure. During an IVF cycle, multiple oocytes undergo maturation in vivo in response to hormonal hyperstimulation. Oocytes for in vitro insemination are collected trans-vaginally. The follicular fluid that bathes the maturing oocyte in vivo, usually is discarded as part of the IVF procedure, but provides a unique opportunity to investigate microbial causes of adverse IVF outcomes. Some previous studies have identified follicular fluid markers that predict IVF pregnancy outcomes. However, there have not been any detailed microbiological studies of follicular fluid. For this current study, paired follicular fluid and vaginal secretion samples were collected from women undergoing IVF cycles to determine whether microorganisms in follicular fluid were associated with adverse IVF outcomes. Microorganisms in follicular fluid were regarded as either "colonisers" or "contaminants"; colonisers, if they were unique to the follicular fluid sample, and contaminants if the same microorganisms were detected in the vaginal and follicular fluid samples indicating that the follicular fluid was merely contaminated during the oocyte retrieval process. Quite unexpectedly, by these criteria, we found that follicular fluid from approximately 30% of all subjects was colonised with bacteria. Fertile and infertile women with colonised follicular fluid had decreased embryo transfer rates and decreased pregnancy rates compared to women with contaminated follicular fluids. The observation that follicular fluid was not always sterile, but contained a diverse range of microorganisms, is novel. Many of the microorganisms we detected in follicular fluid are known opportunistic pathogens that have been detected in upper genital tract infections and are associated with adverse pregnancy outcomes. Bacteria were able to survive for at least 28 weeks in vitro, in cultures of follicular fluid. Within 10 days of establishing these in vitro cultures, several species (Lactobacillus spp., Bifidobacterium spp., Propionibacterium spp., Streptococcus spp. and Salmonella entericus) had formed biofilms. Biofilms play a major role in microbial pathogenicity and persistence. The propensity of microbial species to form biofilms in follicular fluid suggests that successful treatment of these infections with antimicrobials may be difficult. Bifidobacterium spp. grew, in liquid media, only if concentrations of oestradiol and progesterone were similar to those achieved in vivo during an IVF cycle. In contrast, the growth of Streptococcus agalactiae and Escherichia coli was inhibited or abolished by the addition of these hormones to culture medium. These data suggest that the likelihood of microorganisms colonising follicular fluid and the species of bacteria involved is influenced by the stage of the menstrual cycle and, in the case of IVF, the nature and dose of steroid hormones administered for the maturation of multiple oocytes in vivo. Our findings indicate that the elevated levels of steroid hormones during an IVF cycle may influence the microbial growth within follicular fluid, suggesting that the treatment itself will impact on the microflora present in the female upper genital tract during pre-conception and early post-conception phases of the cycle. The effect of the host immune response on colonising bacteria and on the outcomes of IVF also was investigated. White blood cells reportedly compose between 5% and 15% of the cell population in follicular fluid. The follicular membrane is semi-permeable and cells are actively recruited as part of the normal menstrual cycle and in response to microorganisms. A previous study investigated follicular fluid cytokines from infertile women and fertile oocyte donors undergoing IVF, and concluded that there were no significant differences in the cytokine concentrations between the two groups. However, other studies have reported differences in the follicular fluid cytokine levels associated with infertile women with endometriosis or polycystic ovary syndrome. In this study, elevated levels of interleukin (IL)-1 á, IL-1 â and vascular endothelial growth factor (VEGF) in vaginal fluid were associated with successful fertilisation, which may be useful marker for successful fertilisation outcomes for women trying to conceive naturally or prior to oocyte retrieval for IVF. Elevated levels of IL-6, IL-12p40, granulocyte colony stimulating factor (GCSF) and interferon-gamma (IFN ã) in follicular fluid were associated with successful embryo transfer. Elevated levels of pro-inflammatory IL-18 and decreased levels of anti-inflammatory IL-10 were identified in follicular fluid from women with idiopathic infertility. Successful fertilisation and implantation is dependent on a controlled pro-inflammatory environment, involving active recruitment of pro-inflammatory mediators to the genital tract as part of the menstrual cycle and early pregnancy. However, ongoing pregnancy requires an enhanced anti-inflammatory environment to ensure that the maternal immune system does not reject the semi-allergenic foetus. The pro-inflammatory skew in the follicular fluid of women with idiopathic infertility, correlates with normal rates of fertilisation, embryo discard and embryo transfer, observed for this cohort, which were similar to the outcomes observed for fertile women. However, their pregnancy rate was reduced compared to fertile women. An altered local immune response in follicular fluid may provide a means of explaining infertility in this cohort, previously defined as 'idiopathic'. This study has found that microorganisms colonising follicular fluid may have contributed to adverse IVF and pregnancy outcomes. Follicular fluid bathes the cumulus oocyte complex during the in vivo maturation process, and microorganisms in the fluid, their metabolic products or the local immune response to these microorganisms may result in damage to the oocytes, degradation of the cumulus or contamination of the IVF culture system. Previous studies that have discounted bacterial contamination of follicular fluid as a cause of adverse IVF outcomes failed to distinguish between bacteria that were introduced into the follicular fluid at the time of trans-vaginal oocyte retrieval and those that colonised the follicular fluid. Those bacteria that had colonised the fluid may have had time to form biofilms and to elicit a local immune response. Failure to draw this distinction has previously prevented consideration of bacterial colonisation of follicular fluid as a cause of adverse IVF outcomes. Several observations arising from this study are of significance to IVF programs. Follicular fluid is not always sterile and colonisation of follicular fluid is a cause of adverse IVF and pregnancy outcomes. Hormonal stimulation associated with IVF may influence whether follicular fluid is colonised and enhance the growth of specific species of bacteria within follicular fluid. Bacteria in follicular fluid may form biofilms and literature has reported that this may influence their susceptibility to antibiotics. Monitoring the levels of selected cytokines within vaginal secretions may inform fertilisation outcomes. This study has identified novel factors contributing to adverse IVF outcomes and that are most likely to affect also natural conception outcomes. Early intervention, possibly using antimicrobial or immunological therapies may reduce the need for ART and improve reproductive health outcomes for all women.
Resumo:
OBJECTIVE: : Acute traumatic coagulopathy occurs early in hemorrhagic trauma and is a major contributor to mortality and morbidity. Our aim was to examine the effect of small-volume 7.5% NaCl adenocaine (adenosine and lidocaine, adenocaine) and Mg on hypotensive resuscitation and coagulopathy in the rat model of severe hemorrhagic shock. DESIGN: : Prospective randomized laboratory investigation. SUBJECTS: : A total of 68 male Sprague Dawley Rats. INTERVENTION: : Post-hemorrhagic shock treatment for acute traumatic coagulopathy. MEASUREMENTS AND METHODS: : Nonheparinized male Sprague-Dawley rats (300-450 g, n = 68) were randomly assigned to either: 1) untreated; 2) 7.5% NaCl; 3) 7.5% NaCl adenocaine; 4) 7.5% NaCl Mg; or 5) 7.5% NaCl adenocaine/Mg. Hemorrhagic shock was induced by phlebotomy to mean arterial pressure of 35-40 mm Hg for 20 mins (~40% blood loss), and animals were left in shock for 60 mins. Bolus (0.3 mL) was injected into the femoral vein and hemodynamics monitored. Blood was collected in Na citrate (3.2%) tubes, centrifuged, and the plasma snap frozen in liquid N2 and stored at -80°C. Coagulation was assessed using activated partial thromboplastin times and prothrombin times. RESULTS: : Small-volume 7.5% NaCl adenocaine and 7.5% NaCl adenocaine/Mg were the only two groups that gradually increased mean arterial pressure 1.6-fold from 38-39 mm Hg to 52 and 64 mm Hg, respectively, at 60 mins (p < .05). Baseline plasma activated partial thromboplastin time was 17 ± 0.5 secs and increased to 63 ± 21 secs after bleeding time, and 217 ± 32 secs after 60-min shock. At 60-min resuscitation, activated partial thromboplastin time values for untreated, 7.5% NaCl, 7.5% NaCl/Mg, and 7.5% NaCl adenocaine rats were 269 ± 31 secs, 262 ± 38 secs, 150 ± 43 secs, and 244 ± 38 secs, respectively. In contrast, activated partial thromboplastin time for 7.5% NaCl adenocaine/Mg was 24 ± 2 secs (p < .05). Baseline prothrombin time was 28 ± 0.8 secs (n = 8) and followed a similar pattern of correction. CONCLUSIONS: : Plasma activated partial thromboplastin time and prothrombin time increased over 10-fold during the bleed and shock periods prior to resuscitation, and a small-volume (~1 mL/kg) IV bolus of 7.5% NaCl AL/Mg was the only treatment group that raised mean arterial pressure into the permissive range and returned activated partial thromboplastin time and prothrombin time clotting times to baseline at 60 mins.
Resumo:
STUDY QUESTION: What is the self-reported use of in vitro fertilization (IVF) and ovulation induction (OI) in comparison with insurance claims by Australian women aged 28–36 years? SUMMARY ANSWER: The self-reported use of IVF is quite likely to be valid; however, the use of OI is less well reported. WHAT IS KNOWN AND WHAT THIS PAPER ADDS: Population-based research often relies on the self-reported use of IVF and OI because access to medical records can be difficult and the data need to include sufficient personal identifying information for linkage to other data sources. There have been few attempts to explore the reliability of the self-reported use of IVF and OI using the linkage to medical insurance claims for either treatment. STUDY DESIGN: This prospective, population-based, longitudinal study included the cohort of women born during 1973–1978 and participating in the Australian Longitudinal Study on Women's Health (ALSWH) (n = 14247). From 1996 to 2009, participants were surveyed up to five times. PARTICIPANTS AND SETTING: Participants self-reported their use of IVF or OI in two mailed surveys when aged 28–33 and 31–36 years (n = 7280), respectively. This study links self-report survey responses and claims for treatment or medication from the universal national health insurance scheme (i.e. Medicare Australia). MAIN RESULTS AND THE ROLE OF CHANCE: Comparisons between self-reports and claims data were undertaken for all women consenting to the linkage (n = 3375). The self-reported use of IVF was compared with claims for OI for IVF (Kappa, K = 0.83), oocyte collection (K = 0.82), sperm preparation (K = 0.83), intracytoplasmic sperm injection (K = 0.40), fresh embryo transfers (K = 0.82), frozen embryo transfers (K = 0.64) and OI for IVF medication (K = 0.17). The self-reported use of OI was compared with ovulation monitoring (K = 0.52) and OI medication (K = 0.71). BIAS, CONFOUNDING AND OTHER REASONS FOR CAUTION: There is a possibility of selection bias due to the inclusion criteria for participants in this study: (1) completion of the last two surveys in a series of five and (2) consent to the linkage of their responses with Medicare data. GENERALIZABILITY TO OTHER POPULATIONS: The results are relevant to questionnaire-based research studies with infertile women in developed countries. STUDY FUNDING/COMPETING INTEREST(S): ALSWH is funded by the Australian Government Department of Health and Ageing. This research is funded by a National Health and Medical Research Council Centre of Research Excellence grant.
Resumo:
Efficient management of domestic wastewater is a primary requirement for human well being. Failure to adequately address issues of wastewater collection, treatment and disposal can lead to adverse public health and environmental impacts. The increasing spread of urbanisation has led to the conversion of previously rural land into urban developments and the more intensive development of semi urban areas. However the provision of reticulated sewerage facilities has not kept pace with this expansion in urbanisation. This has resulted in a growing dependency on onsite sewage treatment. Though considered only as a temporary measure in the past, these systems are now considered as the most cost effective option and have become a permanent feature in some urban areas. This report is the first of a series of reports to be produced and is the outcome of a research project initiated by the Brisbane City Council. The primary objective of the research undertaken was to relate the treatment performance of onsite sewage treatment systems with soil conditions at site, with the emphasis being on septic tanks. This report consists of a ‘state of the art’ review of research undertaken in the arena of onsite sewage treatment. The evaluation of research brings together significant work undertaken locally and overseas. It focuses mainly on septic tanks in keeping with the primary objectives of the project. This report has acted as the springboard for the later field investigations and analysis undertaken as part of the project. Septic tanks still continue to be used widely due to their simplicity and low cost. Generally the treatment performance of septic tanks can be highly variable due to numerous factors, but a properly designed, operated and maintained septic tank can produce effluent of satisfactory quality. The reduction of hydraulic surges from washing machines and dishwashers, regular removal of accumulated septage and the elimination of harmful chemicals are some of the practices that can improve system performance considerably. The relative advantages of multi chamber over single chamber septic tanks is an issue that needs to be resolved in view of the conflicting research outcomes. In recent years, aerobic wastewater treatment systems (AWTS) have been gaining in popularity. This can be mainly attributed to the desire to avoid subsurface effluent disposal, which is the main cause of septic tank failure. The use of aerobic processes for treatment of wastewater and the disinfection of effluent prior to disposal is capable of producing effluent of a quality suitable for surface disposal. However the field performance of these has been disappointing. A significant number of these systems do not perform to stipulated standards and quality can be highly variable. This is primarily due to houseowner neglect or ignorance of correct operational and maintenance procedures. The other problems include greater susceptibility to shock loadings and sludge bulking. As identified in literature a number of design features can also contribute to this wide variation in quality. The other treatment processes in common use are the various types of filter systems. These include intermittent and recirculating sand filters. These systems too have their inherent advantages and disadvantages. Furthermore as in the case of aerobic systems, their performance is very much dependent on individual houseowner operation and maintenance practices. In recent years the use of biofilters has attracted research interest and particularly the use of peat. High removal rates of various wastewater pollutants have been reported in research literature. Despite these satisfactory results, leachate from peat has been reported in various studies. This is an issue that needs further investigations and as such biofilters can still be considered to be in the experimental stage. The use of other filter media such as absorbent plastic and bark has also been reported in literature. The safe and hygienic disposal of treated effluent is a matter of concern in the case of onsite sewage treatment. Subsurface disposal is the most common and the only option in the case of septic tank treatment. Soil is an excellent treatment medium if suitable conditions are present. The processes of sorption, filtration and oxidation can remove the various wastewater pollutants. The subsurface characteristics of the disposal area are among the most important parameters governing process performance. Therefore it is important that the soil and topographic conditions are taken into consideration in the design of the soil absorption system. Seepage trenches and beds are the common systems in use. Seepage pits or chambers can be used where subsurface conditions warrant, whilst above grade mounds have been recommended for a variety of difficult site conditions. All these systems have their inherent advantages and disadvantages and the preferable soil absorption system should be selected based on site characteristics. The use of gravel as in-fill for beds and trenches is open to question. It does not contribute to effluent treatment and has been shown to reduce the effective infiltrative surface area. This is due to physical obstruction and the migration of fines entrained in the gravel, into the soil matrix. The surface application of effluent is coming into increasing use with the advent of aerobic treatment systems. This has the advantage that treatment is undertaken on the upper soil horizons, which is chemically and biologically the most effective in effluent renovation. Numerous research studies have demonstrated the feasibility of this practice. However the overriding criteria is the quality of the effluent. It has to be of exceptionally good quality in order to ensure that there are no resulting public health impacts due to aerosol drift. This essentially is the main issue of concern, due to the unreliability of the effluent quality from aerobic systems. Secondly, it has also been found that most householders do not take adequate care in the operation of spray irrigation systems or in the maintenance of the irrigation area. Under these circumstances surface disposal of effluent should be approached with caution and would require appropriate householder education and stringent compliance requirements. However despite all this, the efficiency with which the process is undertaken will ultimately rest with the individual householder and this is where most concern rests. Greywater too should require similar considerations. Surface irrigation of greywater is currently being permitted in a number of local authority jurisdictions in Queensland. Considering the fact that greywater constitutes the largest fraction of the total wastewater generated in a household, it could be considered to be a potential resource. Unfortunately in most circumstances the only pretreatment that is required to be undertaken prior to reuse is the removal of oil and grease. This is an issue of concern as greywater can considered to be a weak to medium sewage as it contains primary pollutants such as BOD material and nutrients and may also include microbial contamination. Therefore its use for surface irrigation can pose a potential health risk. This is further compounded by the fact that most householders are unaware of the potential adverse impacts of indiscriminate greywater reuse. As in the case of blackwater effluent reuse, there have been suggestions that greywater should also be subjected to stringent guidelines. Under these circumstances the surface application of any wastewater requires careful consideration. The other option available for the disposal effluent is the use of evaporation systems. The use of evapotranspiration systems has been covered in this report. Research has shown that these systems are susceptible to a number of factors and in particular to climatic conditions. As such their applicability is location specific. Also the design of systems based solely on evapotranspiration is questionable. In order to ensure more reliability, the systems should be designed to include soil absorption. The successful use of these systems for intermittent usage has been noted in literature. Taking into consideration the issues discussed above, subsurface disposal of effluent is the safest under most conditions. This is provided the facility has been designed to accommodate site conditions. The main problem associated with subsurface disposal is the formation of a clogging mat on the infiltrative surfaces. Due to the formation of the clogging mat, the capacity of the soil to handle effluent is no longer governed by the soil’s hydraulic conductivity as measured by the percolation test, but rather by the infiltration rate through the clogged zone. The characteristics of the clogging mat have been shown to be influenced by various soil and effluent characteristics. Secondly, the mechanisms of clogging mat formation have been found to be influenced by various physical, chemical and biological processes. Biological clogging is the most common process taking place and occurs due to bacterial growth or its by-products reducing the soil pore diameters. Biological clogging is generally associated with anaerobic conditions. The formation of the clogging mat provides significant benefits. It acts as an efficient filter for the removal of microorganisms. Also as the clogging mat increases the hydraulic impedance to flow, unsaturated flow conditions will occur below the mat. This permits greater contact between effluent and soil particles thereby enhancing the purification process. This is particularly important in the case of highly permeable soils. However the adverse impacts of the clogging mat formation cannot be ignored as they can lead to significant reduction in the infiltration rate. This in fact is the most common cause of soil absorption systems failure. As the formation of the clogging mat is inevitable, it is important to ensure that it does not impede effluent infiltration beyond tolerable limits. Various strategies have been investigated to either control clogging mat formation or to remediate its severity. Intermittent dosing of effluent is one such strategy that has attracted considerable attention. Research conclusions with regard to short duration time intervals are contradictory. It has been claimed that the intermittent rest periods would result in the aerobic decomposition of the clogging mat leading to a subsequent increase in the infiltration rate. Contrary to this, it has also been claimed that short duration rest periods are insufficient to completely decompose the clogging mat, and the intermediate by-products that form as a result of aerobic processes would in fact lead to even more severe clogging. It has been further recommended that the rest periods should be much longer and should be in the range of about six months. This entails the provision of a second and alternating seepage bed. The other concepts that have been investigated are the design of the bed to meet the equilibrium infiltration rate that would eventuate after clogging mat formation; improved geometry such as the use of seepage trenches instead of beds; serial instead of parallel effluent distribution and low pressure dosing of effluent. The use of physical measures such as oxidation with hydrogen peroxide and replacement of the infiltration surface have been shown to be only of short-term benefit. Another issue of importance is the degree of pretreatment that should be provided to the effluent prior to subsurface application and the influence exerted by pollutant loadings on the clogging mat formation. Laboratory studies have shown that the total mass loadings of BOD and suspended solids are important factors in the formation of the clogging mat. It has also been found that the nature of the suspended solids is also an important factor. The finer particles from extended aeration systems when compared to those from septic tanks will penetrate deeper into the soil and hence will ultimately cause a more dense clogging mat. However the importance of improved pretreatment in clogging mat formation may need to be qualified in view of other research studies. It has also shown that effluent quality may be a factor in the case of highly permeable soils but this may not be the case with fine structured soils. The ultimate test of onsite sewage treatment system efficiency rests with the final disposal of effluent. The implication of system failure as evidenced from the surface ponding of effluent or the seepage of contaminants into the groundwater can be very serious as it can lead to environmental and public health impacts. Significant microbial contamination of surface and groundwater has been attributed to septic tank effluent. There are a number of documented instances of septic tank related waterborne disease outbreaks affecting large numbers of people. In a recent incident, the local authority was found liable for an outbreak of viral hepatitis A and not the individual septic tank owners as no action had been taken to remedy septic tank failure. This illustrates the responsibility placed on local authorities in terms of ensuring the proper operation of onsite sewage treatment systems. Even a properly functioning soil absorption system is only capable of removing phosphorus and microorganisms. The nitrogen remaining after plant uptake will not be retained in the soil column, but will instead gradually seep into the groundwater as nitrate. Conditions for nitrogen removal by denitrification are not generally present in a soil absorption bed. Dilution by groundwater is the only treatment available for reducing the nitrogen concentration to specified levels. Therefore based on subsurface conditions, this essentially entails a maximum allowable concentration of septic tanks in a given area. Unfortunately nitrogen is not the only wastewater pollutant of concern. Relatively long survival times and travel distances have been noted for microorganisms originating from soil absorption systems. This is likely to happen if saturated conditions persist under the soil absorption bed or due to surface runoff of effluent as a result of system failure. Soils have a finite capacity for the removal of phosphorus. Once this capacity is exceeded, phosphorus too will seep into the groundwater. The relatively high mobility of phosphorus in sandy soils have been noted in the literature. These issues have serious implications in the design and siting of soil absorption systems. It is not only important to ensure that the system design is based on subsurface conditions but also the density of these systems in given areas is a critical issue. This essentially involves the adoption of a land capability approach to determine the limitations of an individual site for onsite sewage disposal. The most limiting factor at a particular site would determine the overall capability classification for that site which would also dictate the type of effluent disposal method to be adopted.
Resumo:
Scope: We examined whether dietary supplementation with fish oil modulates inflammation, fibrosis and oxidative stress following obstructive renal injury. Methods and results: Three groups of Sprague-Dawley rats (n = 16 per group) were fed for 4 wk on normal rat chow (oleic acid), chow containing fish oil (33 g eicosapentaenoic acid and 26 g docosahexaenoic acid per kg diet), or chow containing safflower oil (60 g linoleic acid per kg diet). All diets contained 7% fat. After 4 wk, the rats were further subdivided into four smaller groups (n = 4 per group). Unilateral ureteral obstruction was induced in three groups (for 4, 7 and 14 days). The fourth group for each diet did not undergo surgery, and was sacrificed as controls at 14 days. When rats were sacrificed, plasma and portions of the kidneys were removed and frozen; other portions of kidney tissue were fixed and prepared for histology. Compared with normal chow and safflower oil, fish oil attenuated collagen deposition, macrophage infiltration, TGF-beta expression, apoptosis, and tissue levels of arachidonic acid, MIP-1 alpha, IL-1 beta, MCP-1 and leukotriene B(4). Compared with normal chow, fish oil increased the expression of HO-1 protein in kidney tissue. Conclusions: Fish oil intake reduced inflammation, fibrosis and oxidative stress following obstructive renal injury.
Resumo:
Background: HIV-1 Pr55gag virus-like particles (VLPs) expressed by baculovirus in insect cells are considered to be a very promising HIV-1 vaccine candidate, as they have been shown to elicit broad cellular immune responses when tested in animals, particularly when used as a boost to DNA or BCG vaccines. However, it is important for the VLPs to retain their structure for them to be fully functional and effective. The medium in which the VLPs are formulated and the temperature at which they are stored are two important factors affecting their stability. FINDINGS We describe the screening of 3 different readily available formulation media (sorbitol, sucrose and trehalose) for their ability to stabilise HIV-1 Pr55gag VLPs during prolonged storage. Transmission electron microscopy (TEM) was done on VLPs stored at two different concentrations of the media at three different temperatures (4[degree sign]C, --20[degree sign]C and -70[degree sign]C) over different time periods, and the appearance of the VLPs was compared. VLPs stored in 15% trehalose at -70[degree sign]C retained their original appearance the most effectively over a period of 12 months. VLPs stored in 5% trehalose, sorbitol or sucrose were not all intact even after 1 month storage at the temperatures tested. In addition, we showed that VLPs stored under these conditions were able to be frozen and re-thawed twice before showing changes in their appearance. Conclusions Although the inclusion of other analytical tools are essential to validate these preliminary findings, storage in 15% trehalose at -70[degree sign]C for 12 months is most effective in retaining VLP stability.
Resumo:
Purpose: To investigate the effects of an acute multinutrient supplement on game-based running performance, peak power output, anaerobic by-products, hormonal profiles, markers of muscle damage, and perceived muscular soreness before, immediately after, and 24 h following competitive rugby union games. Methods: Twelve male rugby union players ingested either a comprehensive multinutrient supplement (SUPP), [RE-ACTIVATE:01], or a placebo (PL) for 5 d. Participants then performed a competitive rugby union game (with global positioning system tracking), with associated blood draws and vertical jump assessments pre, immediately post and 24 h following competition. Results: SUPP ingestion resulted in moderate to large effects for augmented 1st half very high intensity running (VHIR) mean speed (5.9 ± 0.4 vs 4.8 ± 2.3 m·min–1; d= 0.93). Further, moderate increases in 2nd half VHIR distance (137 ± 119 vs 83 ± 89 m; d= 0.73) and VHIR mean speed (5.9 ± 0.6 v 5.3 ± 1.7 m·min–1; d= 0.56) in SUPP condition were also apparent. Postgame aspartate aminotransferase (AST; 44.1 ± 11.8 vs 37.0 ± 3.2 UL; d= 1.16) and creatine kinase (CK; 882 ± 472 vs. 645 ± 123 UL; d= 0.97) measures demonstrated increased values in the SUPP condition, while AST and CK values correlated with 2nd half VHIR distance (r= –0.71 and r= –0.76 respectively). Elevated C-reactive protein (CRP) was observed postgame in both conditions; however, it was significantly blunted with SUPP (P= .05). Conclusions: These findings suggest SUPP may assist in the maintenance of VHIR during rugby union games, possibly via the buffering qualities of SUPP ingredients. However, correlations between increased work completed at very high intensities and muscular degradation in SUPP conditions, may mask any anticatabolic properties of the supplement.
Resumo:
Return side streams from anaerobic digesters and dewatering facilities at wastewater treatment plants (WWTPs) contribute a significant proportion of the total nitrogen load on a mainstream process. Similarly, significant phosphate loads are also recirculated in biological nutrient removal (BNR) wastewater treatment plants. Ion exchange using a new material, known by the name MesoLite, shows strong potential for the removal of ammonia from these side streams and an opportunity to concurrently reduce phosphate levels. A pilot plant was designed and operated for several months on an ammonia rich centrate from a dewatering centrifuge at the Oxley Creek WWTP, Brisbane, Australia. The system operated with a detention time in the order of one hour and was operated for between 12 and 24 hours prior to regeneration with a sodium rich solution. The same pilot plant was used to demonstrate removal of phosphate from an abattoir wastewater stream at similar flow rates. Using MesoLite materials, >90% reduction of ammonia was achieved in the centrate side stream. A full-scale process would reduce the total nitrogen load at the Oxley Creek WWTP by at least 18%. This reduction in nitrogen load consequently improves the TKN/COD ratio of the influent and enhances the nitrogen removal performance of the biological nutrient removal process.
Resumo:
In wastewater treatment plants based on anaerobic digestion, supernatant and outflows from sludge dewatering systems contain significantly high amount of ammonium. Generally, these waters are returned to the head of wastewater treatment plant (WWTP), thereby increasing the total nitrogen load of the influent flow. Ammonium from these waters can be recovered and commercially utilised using novel ion-exchange materials. Mackinnon et al. have described an approach for removal and recovery of ammonium from side stream centrate returns obtained from anaerobic digester of a typical WWTP. Most of the ammonium from side streams can potentially be removed, which significantly reduces overall inlet demand at a WWTP. However, the extent of reduction achieved depends on the level of ammonium and flow-rate in the side stream. The exchange efficiency of the ion-exchange material, MesoLite, used in the ammonium recovery process deteriorates with long-term use due to mechanical degradation and use of regenerant. To ensure that a sustainable process is utilised a range of potential applications for this “spent” MesoLite have been evaluated. The primary focus of evaluations has been use of ammonium-loaded MesoLite as a source of nitrogen and growth medium for plants. A MesoLite fertiliser has advantage over soluble fertilisers in that N is held on an insoluble matrix and is gradually released according to exchange equilibria. Many conventional N fertilisers are water-soluble and thus, instantly release all applied N into the soil solution. Loss of nutrient commonly occurs through volatilisation and/or leaching. On average, up to half of the N delivered by a typical soluble fertiliser can be lost through these processes. In this context, use of ammonium-loaded MesoLite as a fertiliser has been evaluated using standard greenhouse and field-based experiments for low fertility soils. Rye grass, a suitable test species for greenhouse trials, was grown in 1kg pots over a period of several weeks with regular irrigation. Nitrogen was applied at a range of rates using a chemical fertiliser as a control and using two MesoLite fertilisers. All other nutrients were applied in adequate amounts. All treatments were replicated three times. Plants were harvested after four weeks, and dry plant mass and N concentrations were determined. At all nitrogen application rates, ammonium-loaded MesoLite produced higher plant mass than plants fertilised by the chemical fertiliser. The lower fertiliser effectiveness of the chemical fertliser is attributed to possible loss of some N through volatilisation. The MesoLite fertilisers did not show any adverse effect on availability of macro and trace nutrients, as shown by lack of deficiency symptoms, dry matter yield and plant analyses. Nitrogen loaded on to MesoLite in the form of exchanged ammonium is readily available to plants while remaining protected from losses via leaching and volatilisation. Spent MesoLite appears to be a suitable and effective fertiliser for a wide range of soils, particularly sandy soils with poor nutrient holding capacity.
Resumo:
Methane (CH4) is an important greenhouse gas with a global warming potential (GWP) 25 times greater than carbon dioxide (CO2) that can be produced or consumed in soils depending on environmental conditions and other factors. Biochar application to soils has been shown to reduce CH4 emissions and to increase CH4 consumption. However, the effects of rice husk biochar (RB) have not been thoroughly investigated. Two 60-day laboratory incubation experiments were conducted to investigate the effects of amending two soil types with RB, raw mill mud (MM) and composted mill mud (CM) on soil CH4 consumption and emissions. Soil cores incubated in 1 L glass jars and gas samples were analysed for CH4 using gas chromatography. Average CH4 consumption rates varied from -0.06 to -0.68 g CH4-C( )/ha/d in sandy loam soil and -0.59 to -1.00 g CH4-C/ha/d in clay soil. Application of RB resulted in CH4 uptake of -0.52 to -0.55 g CH4-C/ha/d in sandy loam and -0.76 to -0.91 g CH4-C/ha/d in clay soil. Addition of MM showed low CH4 emissions or consumption at 60% water-filled pore space (WFPS) in both soils. However, at high water contents (>75% WFPS) the application of MM produced high rates of CH4 emissions which were significantly suppressed when RB was added. Cumulative emissions of the MM treatment produced 108.9 g CH4-C/ha at 75% WFPS and 11 459.3 g CH4-C/ha at 90% WFPS in sandy loam soil over a period of 60 days. RB can increase CH4 uptake under low soil water content (SWC) and decrease CH4 emissions under anaerobic conditions. CM expressed more potential to reduce CH4 emissions than those of MM.
Resumo:
Ureaplasma species are the microorganisms most frequently associated with adverse pregnancy outcomes. The multiple banded antigen (MBA), a surface-exposed lipoprotein, is a key virulence factor of ureaplasmas. The MBA demonstrates size variation, which we have shown previously to be correlated with the severity of chorioamnion inflammation. We aimed to investigate U. parvum serovar 3 pathogenesis in vivo, using a sheep model, by investigating: MBA variation after long term (chronic) and short term (acute) durations of in utero ureaplasma infections, and the severity of chorioamnionitis and inflammation in other fetal tissues. Inocula of 2x107 colony-forming-units (CFU) of U. parvum serovar 3 (Up) or media controls (C) were injected intra-amniotically into pregnant ewes at one of three time points: day 55 (69d Up, n=8; C69, n=4); day 117 (7d Up, n=8; C7, n=2); and day 121 (3d Up, n=8; C3, n=2) of gestation (term=145-150d). At day 124, preterm fetuses were delivered surgically. Samples of chorioamnion, fetal lung, and umbilical cord were: (i) snap frozen for subsequent ureaplasma culture, and (ii) fixed, embedded, sectioned and stained by haematoxylin and eosin stain for histological analysis. Selected fetal lung clinical ureaplasma isolates were cloned and filtered to obtain cultures from a single CFU. Passage 1 and clone 2 ureaplasma cultures were tested by western blot to demonstrate MBA variation. In acute durations of ureaplasma infection no MBA variants (3d Up) or very few MBA variants (7d Up) were present when compared to the original inoculum. However, numerous MBA size variants were generated in vivo (alike within contiguous tissues, amniotic fluid and fetal lung, but different variants were present within chorioamnion), during chronic, 69d exposure to ureaplasma infection. For the first time we have shown that the degree of ureaplasma MBA variation in vivo increased with the duration of gestation.
Resumo:
Objective: To investigate the density of the primary epidermal lamellae (PEL) around the solar circumference of the forefeet of near-term fetal feral and nonferal (ie, domesticated) horses. Sample: Left forefeet from near-term Australian feral (n = 14) and domesticated (4) horse fetuses. Procedures: Near-term feral horse fetuses were obtained from culled mares within 10 minutes of death; fetuses that had died in utero 2 weeks prior to anticipated birth date and were delivered from live Thoroughbred mares were also obtained. Following disarticulation at the carpus, the left forefoot of each fetus was frozen during dissection and data collection. In a standard section of each hoof, the stratum internum PEL density was calculated at the midline center (12 o'clock) and the medial and lateral break-over points (11 and 1 o'clock), toe quarters (10 and 2 o'clock), and quarters (4 and 6 o'clock). Values for matching lateral and medial zones were averaged and expressed as 1 density. Density differences at the 4 locations between the feral and domesticated horse feet were assessed by use of imaging software analysis. Results: In fetal domesticated horse feet, PEL density did not differ among the 4 locations. In fetal feral horse feet, PEL density differed significantly among locations, with a pattern of gradual reduction from the dorsal to the palmar aspect of the foot. The PEL density distribution differed significantly between fetal domesticated and feral horse feet. Conclusions and Clinical Relevance: Results indicated that PEL density distribution differs between fetal feral and domesticated horse feet, suggestive of an adaptation of feral horses to environment challenges.