27 resultados para adiposity
Resumo:
OBJECTIVE To compare the physical activity levels of overweight and non overweight 3- to 5-y-old children while attending preschool. A secondary aim was to evaluate weight-related differences in hypothesized parental determinants of child physical activity behavior. DESIGN Cross-sectional study. SUBJECTS A total of 245, 3- to 5-y-olds (127 girls, 118 boys) and their parent(s) (242 mothers, 173 fathers) recruited from nine preschools. Overweight status determined using the age- and sex-specific 85th percentile for body mass index (BMI) from CDC Growth Charts. MEASUREMENTS Physical activity during the preschool day was assessed on multiple days via two independent objective measures direct observation using the observation system for recording activity in preschools (OSRAP) and real-time accelerometry using the MTI/CSA 7164 accelerometer. Parents completed a take-home survey assessing sociodemographic information, parental height and weight, modeling of physical activity, support for physical activity, active toys and sporting equipment at home, child’s television watching, frequency of park visitation, and perceptions of child competence. RESULTS Overweight boys were significantly less active than their nonoverweight peers during the preschool day. No significant differences were observed in girls. Despite a strong association between childhood overweight status and parental obesity, no significant differences were observed for the hypothesized parental influences on physical activity behavior. CONCLUSIONS Our results suggest that a significant proportion of overweight children may be at increased risk for further gains in adiposity because of low levels of physical activity during the preschool day.
Resumo:
OBJECTIVE To compare the physical activity levels of overweight and non overweight 3- to 5-y-old children while attending preschool. A secondary aim was to evaluate weight-related differences in hypothesized parental determinants of child physical activity behavior. DESIGN: Cross-sectional study. SUBJECTS A total of 245, 3- to 5-y-olds (127 girls, 118 boys) and their parent(s) (242 mothers, 173 fathers) recruited from nine preschools. Overweight status determined using the age- and sex-specific 85th percentile for body mass index (BMI) from CDC Growth Charts. MEASUREMENTS Physical activity during the preschool day was assessed on multiple days via two independent objective measuresFdirect observation using the observation system for recording activity in preschools (OSRAP) and real-time accelerometry using the MTI/CSA 7164 accelerometer. Parents completed a take-home survey assessing sociodemographic information, parental height and weight, modeling of physical activity, support for physical activity, active toys and sporting equipment at home, child’s television watching, frequency of park visitation, and perceptions of child competence. RESULTS Overweight boys were significantly less active than their nonoverweight peers during the preschool day. No significant differences were observed in girls. Despite a strong association between childhood overweight status and parental obesity, no significant differences were observed for the hypothesized parental influences on physical activity behavior. CONCLUSIONS Our results suggest that a significant proportion of overweight children may be at increased risk for further gains in adiposity because of low levels of physical activity during the preschool day.
Resumo:
Glucocorticoid hormones are critical to respond and adapt to stress. Genetic variations in the glucocorticoid receptor (GR) gene alter hypothalamic-pituitary-adrenal (HPA) axis activity and associate with hypertension and susceptibility to metabolic disease. Here we test the hypothesis that reduced GR density alters blood pressure and glucose and lipid homeostasis and limits adaption to obesogenic diet. Heterozygous GR βgeo/+ mice were generated from embryonic stem (ES) cells with a gene trap integration of a β-galactosidase-neomycin phosphotransferase (βgeo) cassette into the GR gene creating a transcriptionally inactive GR fusion protein. Although GRβgeo/+ mice have 50% less functional GR, they have normal lipid and glucose homeostasis due to compensatory HPA axis activation but are hypertensive due to activation of the renin-angiotensin- aldosterone system (RAAS). When challenged with a high-fat diet, weight gain, adiposity, and glucose intolerance were similarly increased in control and GRβgeo/+ mice, suggesting preserved control of intermediary metabolism and energy balance. However, whereas a high-fat diet caused HPA activation and increased blood pressure in control mice, these adaptions were attenuated or abolished in GRβgeo/+ mice. Thus, reduced GR density balanced by HPA activation leaves glucocorticoid functions unaffected but mineralocorticoid functions increased, causing hypertension. Importantly, reduced GR limits HPA and blood pressure adaptions to obesogenic diet.
Resumo:
There is a higher prevalence of ischemic heart disease (IHD) in South African white than black women. The objective of this study was to determine biochemical explanations for this prevalence. The study group contained 15 obese black women (OBW) and 14 obese white women (OWW), ah premenopausal, who were examined after an overnight fast. Anthropometric measurements and blood concentrations of glucose, non-esterified fatty acids (NEFAs), catecholamines, plasminogen activator inhibitor-1, C-peptide, proinsulin, lipograms, cortisol, growth hormone, and post-heparin Lipoprotein Lipase activity were measured during an oral glucose tolerance test (OGTT), Body composition was measured using bioelectrical impedance analysis, and subcutaneous and visceral fat mass were assessed with CT-scans. Visceral fat area was higher in OWW (139.7 +/- 10.7 cm(2)) than in OBW (72.3 +/- 3.9 cm(2)) (P < 0.01), as were fasting and 3 h triglyceride concentrations (P < 0.05 for all). OWW also had higher NEFA levels than OBW at 3 and 4 h compared, with OBW (P < 0.05 for both). Fasting cortisol (266 +/- 24 vs. 197 +/- 19 nmol/l; P < 0.05) was higher in OWW than in OBW. These data demonstrate that OWW have higher visceral fat mass than OBW, which may lead to a more atherogenic fasting and postprandial Lipid profile. The higher cortisol levels of the OWW may promote visceral fat deposition. - Punyadeera, C., M-T. van der Merwe, N.J. Crowther, M. Toman, C. P. Schlaphoff, and I. P. Gray. Ethnic differences in lipid metabolism in two groups of obese South African women.
Resumo:
Background: Body mass index (BMI) is widely used as a measure of adiposity. However, currently used cut-off values are not sensitive in diagnosing obesity in South Asian populations. Aim: To define BMI and waist circumference (WC), cut-off values representing percentage fat mass (%FM) associated with adverse health outcomes. Subjects and methods: A cross-sectional descriptive study of 285 5–14 year old Sri Lankan children (56% boys) was carried out. Fat mass (FM) was assessed using the isotope (D2O) dilution technique based on 2C body composition model. BMI and WC cut-off values were defined based on %FM associated with adverse health outcomes. Results: Sri Lankan children had a low fat free mass index (FFMI) and a high fat mass index (FMI). Individuals with the same BMI had %FM distributed over a wide range. Lean body tissue grew very little with advancing age and weight gain was mainly due to increases in body fat. BMI corresponding to 25% in males and 35% in females at 18 years was 19.2 kg/m2 and 19.7 kg/m2, respectively. WC cut-off values for males and females were 68.4 cm and 70.4 cm, respectively. Conclusion: This chart analysis clearly confirms that Sri Lankan children have a high %FM from a young age. With age, more changes occur in FM than in fat free mass (FFM). Although the newly defined BMI and WC cut-off values appear to be quite low, they are comparable to some recent data obtained in similar populations.
Resumo:
- Background This study examined relationships between adiposity, physical functioning and physical activity. - Methods Obese (N=107) and healthy-weight (N=132) children aged 10-13 years underwent assessments of percent body fat (%BF, dual energy X-ray absorptiometry), knee extensor strength (KE, isokinetic dynamometry), cardiorespiratory fitness (CRF, peak oxygen uptake by cycle ergometry), physical health-related quality of life (HRQOL), worst pain intensity and walking capacity [six-minute walk (6MWT)]. Structural equation modelling was used to assess relationships between variables. - Results Moderate relationships were observed between %BF and 6MWT, KE strength corrected for mass and CRF relative to mass (r -.36 to -.69, P≤.007). Weak relationships were found between: %BF and physical HRQOL (r -.27, P=.008); CRF relative to mass and physical HRQOL (r -.24, P=.003); physical activity and 6MWT (r .17, P=.004). Squared multiple correlations showed that 29.6% variance in physical HRQOL was explained by %BF, pain and CRF relative to mass, while 28% variance in 6MWT was explained by %BF and physical activity. - Conclusions It appears that children with a higher body fat percentage have poorer KE strength, CRF and overall physical functioning. Reducing percent fat appears to be the best target to improve functioning. However, a combined approach to intervention, targeting reductions in body fat percentage, pain and improvements in physical activity and CRF may assist physical functioning.
Resumo:
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10−8). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
Resumo:
Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10−8), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ~2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
Resumo:
Endometriosis is a chronic inflammatory condition in women that results in pelvic pain and subfertility, and has been associated with decreased body mass index (BMI). Genetic variants contributing to the heritable component have started to emerge from genome-wide association studies (GWAS), although the majority remain unknown. Unexpectedly, we observed an intergenic locus on 7p15.2 that was genome-wide significantly associated with both endometriosis and fat distribution (waist-to-hip ratio adjusted for BMI; WHRadjBMI) in an independent meta-GWAS of European ancestry individuals. This led us to investigate the potential overlap in genetic variants underlying the aetiology of endometriosis, WHRadjBMI and BMI using GWAS data. Our analyses demonstrated significant enrichment of common variants between fat distribution and endometriosis (P = 3.7 x 10(-3)), which was stronger when we restricted the investigation to more severe (Stage B) cases (P = 4.5 x 10(-4)). However, no genetic enrichment was observed between endometriosis and BMI (P = 0.79). In addition to 7p15.2, we identify four more variants with statistically significant evidence of involvement in both endometriosis and WHRadjBMI (in/near KIFAP3, CAB39L, WNT4, GRB14); two of these, KIFAP3 and CAB39L, are novel associations for both traits. KIFAP3, WNT4 and 7p15.2 are associated with the WNT signalling pathway; formal pathway analysis confirmed a statistically significant (P = 6.41 x 10(-4)) overrepresentation of shared associations in developmental processes/WNT signalling between the two traits. Our results demonstrate an example of potential biological pleiotropy that was hitherto unknown, and represent an opportunity for functional follow-up of loci and further cross-phenotype comparisons to assess how fat distribution and endometriosis pathogenesis research fields can inform each other.
Resumo:
Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 × 10−9 to P = 1.8 × 10−40) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10−3 to P = 1.2 × 10−13). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.
Resumo:
Summary Common variants in WNT pathway genes have been associated with bone mass and fat distribution, the latter predicting diabetes and cardiovascular disease risk. Rare mutations in the WNT co-receptors LRP5 and LRP6 are similarly associated with bone and cardiometabolic disorders. We investigated the role of LRP5 in human adipose tissue. Subjects with gain-of-function LRP5 mutations and high bone mass had enhanced lower-body fat accumulation. Reciprocally, a low bone mineral density-associated common LRP5 allele correlated with increased abdominal adiposity. Ex vivo LRP5 expression was higher in abdominal versus gluteal adipocyte progenitors. Equivalent knockdown of LRP5 in both progenitor types dose-dependently impaired β-catenin signaling and led to distinct biological outcomes: diminished gluteal and enhanced abdominal adipogenesis. These data highlight how depot differences in WNT/β-catenin pathway activity modulate human fat distribution via effects on adipocyte progenitor biology. They also identify LRP5 as a potential pharmacologic target for the treatment of cardiometabolic disorders. © 2015 The Authors.
Resumo:
Background Epidemiological studies suggest a potential role for obesity and determinants of adult stature in prostate cancer risk and mortality, but the relationships described in the literature are complex. To address uncertainty over the causal nature of previous observational findings, we investigated associations of height- and adiposity-related genetic variants with prostate cancer risk and mortality. Methods We conducted a case–control study based on 20,848 prostate cancers and 20,214 controls of European ancestry from 22 studies in the PRACTICAL consortium. We constructed genetic risk scores that summed each man’s number of height and BMI increasing alleles across multiple single nucleotide polymorphisms robustly associated with each phenotype from published genome-wide association studies. Results The genetic risk scores explained 6.31 and 1.46 % of the variability in height and BMI, respectively. There was only weak evidence that genetic variants previously associated with increased BMI were associated with a lower prostate cancer risk (odds ratio per standard deviation increase in BMI genetic score 0.98; 95 % CI 0.96, 1.00; p = 0.07). Genetic variants associated with increased height were not associated with prostate cancer incidence (OR 0.99; 95 % CI 0.97, 1.01; p = 0.23), but were associated with an increase (OR 1.13; 95 % CI 1.08, 1.20) in prostate cancer mortality among low-grade disease (p heterogeneity, low vs. high grade <0.001). Genetic variants associated with increased BMI were associated with an increase (OR 1.08; 95 % CI 1.03, 1.14) in all-cause mortality among men with low-grade disease (p heterogeneity = 0.03). Conclusions We found little evidence of a substantial effect of genetically elevated height or BMI on prostate cancer risk, suggesting that previously reported observational associations may reflect common environmental determinants of height or BMI and prostate cancer risk. Genetically elevated height and BMI were associated with increased mortality (prostate cancer-specific and all-cause, respectively) in men with low-grade disease, a potentially informative but novel finding that requires replication.