52 resultados para Zones of Peace
Resumo:
A holistic study of the composition of the basalt groundwaters of the Atherton Tablelands region in Queensland, Australia was undertaken to elucidate possible mechanisms for the evolution of these very low salinity, silica- and bicarbonate-rich groundwaters. It is proposed that aluminosilicate mineral weathering is the major contributing process to the overall composition of the basalt groundwaters. The groundwaters approach equilibrium with respect to the primary minerals with increasing pH and are mostly in equilibrium with the major secondary minerals (kaolinite and smectite), and other secondary phases such as goethite, hematite, and gibbsite, which are common accessory minerals in the Atherton basalts. The mineralogy of the basalt rocks, which has been examined using X-ray diffraction and whole rock geochemistry methods, supports the proposed model for the hydrogeochemical evolution of these groundwaters: precipitation + CO 2 (atmospheric + soil) + pyroxene + feldspars + olivine yields H 4SiO 4, HCO 3 -, Mg 2+, Na +, Ca 2+ + kaolinite and smectite clays + amorphous or crystalline silica + accessory minerals (hematite, goethite, gibbsite, carbonates, zeolites, and pyrite). The variations in the mineralogical content of these basalts also provide insights into the controls on groundwater storage and movement in this aquifer system. The fresh and weathered vesicular basalts are considered to be important in terms of zones of groundwater occurrence, while the fractures in the massive basalt are important pathways for groundwater movement.
Resumo:
This paper discusses: -The need for law schools to use curriculum as a site for positive interventions to support student psychological well-being. -The potential for law school interventions to impact on the psychological well-being of the profession. -Reflective practice as a possible tool for promoting psychological well-being in law school and the profession because it provides a way of coping with ‘indeterminate zones’ of experience.
Resumo:
Objective: We hypothesize that chondrocytes from distinct zones of articular cartilage respond differently to compressive loading, and that zonal chondrocytes from osteoarthritis (OA) patients can benefit from optimized compressive stimulation. Therefore, we aimed to determine the transcriptional response of superficial (S) and middle/deep (MD) zone chondrocytes to varying dynamic compressive strain and loading duration. To confirm effects of compressive stimulation on overall matrix production, we subjected zonal chondrocytes to compression for 2 weeks. Design: Human S and MD chondrocytes from osteoarthritic joints were encapsulated in 2% alginate, pre-cultured, and subjected to compression with varying dynamic strain (5, 15, 50% at 1 Hz) and loading duration (1, 3, 12 h). Temporal changes in cartilage-specific, zonal, and dedifferentiation genes following compression were evaluated using quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). The benefits of long-term compression (50% strain, 3 h/day, for 2 weeks) were assessed by measuring construct glycosaminoglycan (GAG) content and compressive moduli, as well as immunostaining. Results: Compressive stimulation significantly induced aggrecan (ACAN), COL2A1, COL1A1, proteoglycan 4 (PRG4), and COL10A1 gene expression after 2 h of unloading, in a zone-dependent manner (P < 0.05). ACAN and PRG4 mRNA levels depended on strain and load duration, with 50% and 3 h loading resulting in highest levels (P < 0.05). Long-term compression increased collagen type II and ACAN immunostaining and total GAG (P < 0.05), but only S constructs showed more PRG4 stain, retained more GAG (P < 0.01), and developed higher compressive moduli than non-loaded controls. Conclusions: The biosynthetic activity of zonal chondrocytes from osteoarthritis joints can be enhanced with selected compression regimes, indicating the potential for cartilage tissue engineering applications. © 2012 Osteoarthritis Research Society International.
Resumo:
In this paper, a three-dimensional nonlinear rigid body model has been developed for the investigation of the crashworthiness of a passenger train using the multibody dynamics approach. This model refers to a typical design of passenger cars and train constructs commonly used in Australia. The high-energy and low-energy crush zones of the cars and the train constructs are assumed and the data are explicitly provided in the paper. The crash scenario is limited to the train colliding on to a fixed barrier symmetrically. The simulations of a single car show that this initial design is only applicable for the crash speed of 35 km/h or lower. For higher speeds (e.g. 140 km/h), the crush lengths or crush forces or both the crush zone elements will have to be enlarged. It is generally better to increase the crush length than the crush force in order to retain the low levels of the longitudinal deceleration of the passenger cars.
Resumo:
Articular cartilage is a highly resilient tissue located at the ends of long bones. It has a zonal structure, which has functional significance in load-bearing. Cartilage does not spontaneously heal itself when damaged, and untreated cartilage lesions or age-related wear often lead to osteoarthritis (OA). OA is a degenerative condition that is highly prevalent, age-associated, and significantly affects patient mobility and quality of life. There is no cure for OA, and patients usually resort to replacing the biological joint with an artificial prosthesis. An alternative approach is to dynamically regenerate damaged or diseased cartilage through cartilage tissue engineering, where cells, materials, and stimuli are combined to form new cartilage. However, despite extensive research, major limitations remain that have prevented the wide-spread application of tissue-engineered cartilage. Critically, there is a dearth of information on whether autologous chondrocytes obtained from OA patients can be used to successfully generate cartilage tissues with structural hierarchy typically found in normal articular cartilage. I aim to address these limitations in this thesis by showing that chondrocyte subpopulations isolated from macroscopically normal areas of the cartilage can be used to engineer stratified cartilage tissues and that compressive loading plays an important role in zone-dependent biosynthesis of these chondrocytes. I first demonstrate that chondrocyte subpopulations from the superficial (S) and middle/deep (MD) zones of OA cartilage are responsive to compressive stimulation in vitro, and that the effect of compression on construct quality is zone-dependent. I also show that compressive stimulation can influence pericelluar matrix production, matrix metalloproteinase secretion, and cytokine expression in zonal chondrocytes in an alginate hydrogel model. Subsequently, I focus on recreating the zonal structure by forming layered constructs using the alginate-released chondrocyte (ARC) method either with or without polymeric scaffolds. Resulting zonal ARC constructs had hyaline morphology, and expressed cartilage matrix molecules such as proteoglycans and collagen type II in both scaffold-free and scaffold-based approaches. Overall, my findings demonstrate that chondrocyte subpopulations obtained from OA joints respond sensitively to compressive stimulation, and are able to form cartilaginous constructs with stratified organization similar to native cartilage using the scaffold-free and scaffold-based ARC technique. The ultimate goal in tissue engineering is to help provide improved treatment options for patients suffering from debilitating conditions such as OA. Further investigations in developing functional cartilage replacement tissues using autologous chondrocytes will bring us a step closer to improving the quality of life for millions of OA patients worldwide.
Resumo:
The effectiveness of a repair work for the restoration of spalled reinforced concrete (r.c.) structures depends to a great extent, on their ability to restore the structural integrity of the r.c. element, to restore its serviceability and to protect the reinforcements from further deterioration. This paper presents results of a study concocted to investigate the structural performance of eight spalled r.c. beams repaired using two advanced repair materials in various zones for comparison purposes, namely a free flowing self compacting mortar (FFSCM) and a polymer Modified cementitious mortar (PMCM). The repair technique adopted was that for the repair of spalled concrete in which the bond between the concrete and steel was completely lost due to reinforcement corrosion or the effect of fire or impact. The beams used for the experiment were first cast, then hacked at various zones before they were repaired except for the control beam. The beam specimens were then loaded to failure under four point loadings. The structural response of each beam was evaluated in terms of first crack load, cracking behavior, crack pattern, deflection, variation of strains in the concrete and steel, collapse load and the modes of failure. The results of the test showed that, the repair materials applied on the various zones of the beams were able to restore more than 100% of the beams’ capacity and that FFSCM gave a better overall performance.
Resumo:
The Sudbury Basin is a non-cylindrical fold basin occupying the central portion of the Sudbury Impact Structure. The impact structure lends itself excellently to explore the structural evolution of continental crust containing a circular region of long-term weakness. In a series of scaled analogue experiments various model crustal configurations were shortened horizontally at a constant rate. In mechanically weakened crust, model basins formed that mimic several first-order structural characteristics of the Sudbury Basin: (1) asymmetric, non-cylindrical folding of the Basin, (2) structures indicating concentric shortening around lateral basin termini and (3) the presence of a zone of strain concentration near the hinge zones of model basins. Geometrically and kinematically this zone corresponds to the South Range Shear Zone of the Sudbury Basin. According to our experiments, this shear zone is a direct mechanical consequence of basin formation, rather than the result of thrusting following folding. Overall, the models highlight the structurally anomalous character of the Sudbury Basin within the Paleoproterozoic Eastern Penokean Orogen. In particular, our models suggest that the Basin formed by pure shear thickening of crust, whereas transpressive deformation prevailed elsewhere in the orogen. The model basin is deformed by thickening and non-cylindrical synformal buckling, while conjugate transpressive shear zones propagated away from its lateral tips. This is consistent with pure shear deformation of a weak circular inclusion in a strong matrix. The models suggest that the Sudbury Basin formed as a consequence of long-term weakening of the upper crust by meteorite impact.
Resumo:
The increased popularity of mopeds and motor scooters in Australia and elsewhere in the last decade has contributed substantially to the greater use of powered two-wheelers (PTWs) as a whole. As the exposure of mopeds and scooters has increased, so too has the number of reported crashes involving those PTW types, but there is currently little research comparing the safety of mopeds and, particularly, larger scooters with motorcycles. This study compared the crash risk and crash severity of motorcycles, mopeds and larger scooters in Queensland, Australia. Comprehensive data cleansing was undertaken to separate motorcycles, mopeds and larger scooters in police-reported crash data covering the five years to 30 June 2008. The crash rates of motorcycles (including larger scooters) and mopeds in terms of registered vehicles were similar over this period, although the moped crash rate showed a stronger downward trend. However, the crash rates in terms of distance travelled were nearly four times higher for mopeds than for motorcycles (including larger scooters). More comprehensive distance travelled data is needed to confirm these findings. The overall severity of moped and scooter crashes was significantly lower than motorcycle crashes but an ordered probit regression model showed that crash severity outcomes related to differences in crash characteristics and circumstances, rather than differences between PTW types per se. Greater motorcycle crash severity was associated with higher (>80 km/h) speed zones, horizontal curves, weekend, single vehicle and nighttime crashes. Moped crashes were more severe at night and in speed zones of 90 km/h or more. Larger scooter crashes were more severe in 70 km/h zones (than 60 km/h zones) but not in higher speed zones, and less severe on weekends than on weekdays. The findings can be used to inform potential crash and injury countermeasures tailored to users of different PTW types.
Resumo:
Gaudefroyite Ca4Mn3+3-x(BO3)3(CO3)(O,OH)3 is an unusual mineral containing both borate and carbonate groups and is found in the oxidation zones of manganese minerals, and it is black in color. Vibrational spectroscopy has been used to explore the molecular structure of gaudefroyite. Gaudefroyite crystals are short dipyramidal or prismatic with prominent pyramidal terminations, to 5 cm. Two very sharp Raman bands at 927 and 1076 cm-1are assigned to trigonal borate and carbonate respectively. Broad Raman bands at 1194, 1219 and 1281 cm-1 are attributed to BOH in-plane bending modes. Raman bands at 649 and 670 cm-1 are assigned to the bending modes of trigonal and tetrahedral boron. Infrared spectroscopy supports these band assignments. Raman bands in the OH stretching region are of a low intensity. The combination of Raman and infrared spectroscopy enables the assessment of the molecular structure of gaudefroyite to be made.
Resumo:
This paper aims to evaluate the brand value of property in subdivision developments in the Bangkok Metropolitan Region (BMR), Thailand. The result has been determined by the application of a hedonic price model. The development of the model is developed based on a sample of 1,755 property sales during the period of 1992-2010 in eight zones of the BMR. The results indicate that the use of a semi-logarithmic model has stronger explanatory power and is more reliable. Property price increases 12.90% from the branding. Meanwhile, the price annually increases 2.96%; lot size and dwelling area have positive impacts on the price. In contrast, duplexes and townhouses have a negative impact on the price compared to single detached houses. Moreover, the price of properties which are located outside the Bangkok inner city area is reduced by 21.26% to 43.19%. These findings also contribute towards a new understanding of the positive impact of branding on the property price in the BMR. The result is useful for setting selling prices for branded and unbranded properties, and the model could provide a reference for setting property prices in subdivision developments in the BMR.
Resumo:
Throughout much of the world, urban and rural public spaces may be said to be under attack by property developers, commercial interests and also attempts by civic authorities to regulate, restrict, reframe and rebrand these spaces. A consequence of the increasingly security driven, privatised, commercial and surveilled nature of public space is the exclusion and displacement of those considered ‘flawed’ and unwelcome in the ‘spectacular’ consumption spaces of many major urban centres. In the name of urban regeneration, processes of securitisation, ‘gentrification’ and creative cities initiatives can act to refashion public space as sites of selective inclusion and exclusion. The use of surveillance and other control technologies as deployed in and around the UK ‘Riots’ of 2011 may help to promote and encourage a passing sense of personal safety and confidence in using public space. Through systems of social sorting, the same surveillance assemblages can also further the physical, emotional and psychological exclusion of certain groups and individuals, deemed to be both ‘out of time and out of place’ in major zones of urban, conspicuous, consumption. In this harsh environment of monitoring and control procedures, children and young people’s use of public spaces and places in parks, neighbourhoods, shopping malls and streets is often viewed as a threat to social order, requiring various forms of punitive and/or remedial action. Much of this civic action actively excludes some children and young people from participation and as a consequence, their trust in local processes and communities is eroded. This paper discusses worldwide developments in the surveillance, governance and control of the public space environments used by children and young people in particular and the capacity for their displacement and marginality, diminishing their sense of belonging, wellbeing and rights to public space as an expression of their social, political and civil citizenship(s).
Resumo:
The distribution of flux of carbon-bearing cations over nanopatterned surfaces with conductive nanotips and nonconductive nanoislands is simulated using the Monte-Carlo technique. It is shown that the ion current is focused to nanotip surfaces when the negative substrate bias is low and only slightly perturbed at higher substrate biases. In the low-bias case, the mean horizontal ion displacement caused by the nanotip electric field exceeds 10 nm. However, at higher substrate biases, this value reduces down to 2 nm. In the nonconductive nanopattern case, the ion current distribution is highly nonuniform, with distinctive zones of depleted current density around the nanoislands. The simulation results suggest the efficient means to control ion fluxes in plasma-aided nanofabrication of ordered nanopatterns, such as nanotip microemitter structures and quantum dot or nanoparticle arrays. © World Scientific Publishing Company.
Resumo:
This chapter presents the stability analysis based on bifurcation theory of the distribution static compensator (DSTATCOM) operating both in current control mode as in voltage control mode. The bifurcation analysis allows delimiting the operating zones of nonlinear power systems and hence the computation of these boundaries is of interest for practical design and planning purposes. Suitable mathematical representations of the DSTATCOM are proposed to carry out the bifurcation analyses efficiently. The stability regions in the Thevenin equivalent plane are computed for different power factors at the Point of Common Coupling (PCC). In addition, the stability regions in the control gain space are computed, and the DC capacitor and AC capacitor impact on the stability are analyzed in detail. It is shown through bifurcation analysis that the loss of stability in the DSTATCOM is in general due to the emergence of oscillatory dynamics. The observations are verified through detailed simulation studies.
Resumo:
This article argues that the secular liberal and positivist foundations of the modern Western legal system render it violent. In particular, the liberal exclusion of faith and subjectivity in favour of abstract and universal reason in conjunction with its privileging of individual autonomy at the expense of the community leads to alienation of the individual from the community. Similarly, the positivist exclusion of faith and theology from law, with its enforced conformity to the posited law, also results in this violence of alienation. In response, this article proposes a new foundation for law, a natural law based in the truth of Trinitarian theology articulated by John Milbank. In the Trinity, the members exist as a perfect unity in diversity, providing a model for the reconciliation of the legal individual and community: the law of love. Through the law of love as the basic norm, individuals love their neighbours as themselves, reconciling the particular and the universal, and providing a community of peace rather than violence.
Resumo:
Peace education can be most simply thought of as educating students to create a more peaceful world. However, just as peace needs to be thought of as more than merely the absence of war, so too peace education needs to be thought of as being more than educating students to understand the importance of avoiding war. Peace is the presence of justice, and thus a fuller definition of peace education is educating students to create a more just and harmonious world. Peace education may thought of as having an international dimension, that is, educating for peace and social justice between nation-states; as having a domestic dimension, that is, educating for peace and social justice within societies, groups and families; and as having a personal dimension, that is, educating for peace and justice in our individual personal relationships and educating for inner peace. Moreover, many writers now also see peace education as encompassing our inter-relationship with our natural environment. All these dimensions of peace education can be seen to be inter-related...