37 resultados para Whitman, Walt, 1819-1892.
Resumo:
Genetic recombination is a fundamental evolutionary mechanism promoting biological adaptation. Using engineered recombinants of the small single-stranded DNA plant virus, Maize streak virus (MSV), we experimentally demonstrate that fragments of genetic material only function optimally if they reside within genomes similar to those in which they evolved. The degree of similarity necessary for optimal functionality is correlated with the complexity of intragenomic interaction networks within which genome fragments must function. There is a striking correlation between our experimental results and the types of MSV recombinants that are detectable in nature, indicating that obligatory maintenance of intragenome interaction networks strongly constrains the evolutionary value of recombination for this virus and probably for genomes in general.
Resumo:
Experimental investigations into virus recombination can provide valuable insights into the biochemical mechanisms and the evolutionary value of this fundamental biological process. Here, we describe an experimental scheme for studying recombination that should be applicable to any recombinogenic viruses amenable to the production of synthetic infectious genomes. Our approach is based on differences in fitness that generally exist between synthetic chimaeric genomes and the wild-type viruses from which they are constructed. In mixed infections of defective reciprocal chimaeras, selection strongly favours recombinant progeny genomes that recover a portion of wild-type fitness. Characterizing these evolved progeny viruses can highlight both important genetic fitness determinants and the contribution that recombination makes to the evolution of their natural relatives. Moreover, these experiments supply precise information about the frequency and distribution of recombination breakpoints, which can shed light on the mechanistic processes underlying recombination. We demonstrate the value of this approach using the small single-stranded DNA geminivirus, maize streak virus (MSV). Our results show that adaptive recombination in this virus is extremely efficient and can yield complex progeny genomes comprising up to 18 recombination breakpoints. The patterns of recombination that we observe strongly imply that the mechanistic processes underlying rolling circle replication are the prime determinants of recombination breakpoint distributions found in MSV genomes sampled from nature. © 2009 SGM.
Resumo:
Background. Recent reports have indicated that single-stranded DNA (ssDNA) viruses in the taxonomic families Geminiviridae, Parvoviridae and Anellovirus may be evolving at rates of ∼10-4 substitutions per site per year (subs/site/year). These evolution rates are similar to those of RNA viruses and are surprisingly high given that ssDNA virus replication involves host DNA polymerases with fidelities approximately 10 000 times greater than those of error-prone viral RNA polymerases. Although high ssDNA virus evolution rates were first suggested in evolution experiments involving the geminivirus maize streak virus (MSV), the evolution rate of this virus has never been accurately measured. Also, questions regarding both the mechanistic basis and adaptive value of high geminivirus mutation rates remain unanswered. Results. We determined the short-term evolution rate of MSV using full genome analysis of virus populations initiated from cloned genomes. Three wild type viruses and three defective artificial chimaeric viruses were maintained in planta for up to five years and displayed evolution rates of between 7.4 × 10-4 and 7.9 × 10-4 subs/site/year. Conclusion. These MSV evolution rates are within the ranges observed for other ssDNA viruses and RNA viruses. Although no obvious evidence of positive selection was detected, the uneven distribution of mutations within the defective virus genomes suggests that some of the changes may have been adaptive. We also observed inter-strand nucleotide substitution imbalances that are consistent with a recent proposal that high mutation rates in geminiviruses (and possibly ssDNA viruses in general) may be due to mutagenic processes acting specifically on ssDNA molecules. © 2008 Walt et al; licensee BioMed Central Ltd.
Resumo:
Most mastreviruses (family Geminiviridae) infect monocotyledonous hosts and are transmitted by leafhopper vectors. Only two mastrevirus species, Tobacco yellow dwarf virus from Australia and Bean yellow dwarf virus (BeYDV) from South Africa, have been identified whose members infect dicotyledonous plants. We have identified two distinct mastreviruses in chickpea stunt disease (CSD)-affected chickpea originating from Pakistan. The first is an isolate of BeYDV, previously only known to occur in South Africa. The second is a member of a new species with the BeYDV isolates as its closest relatives. A PCR-based diagnostic test was developed to differentiate these two virus species. Our results show that BeYDV plays no role in the etiology of CSD in Pakistan, while the second virus occurs widely in chickpea across Pakistan. A genomic clone of the new virus was infectious to chickpea (Cicer arietinum L.) and induced symptoms typical of CSD. We propose the use of the name Chickpea chlorotic dwarf Pakistan virus for the new species. The significance of these findings with respect to our understanding of the evolution, origin and geographic spread of dicot-infecting mastreviruses is discussed. © 2008 Springer-Verlag.
Resumo:
Background: We have previously shown the high prevalence of oral anti-human papillomavirus type 16 (HPV-16) antibodies in women with HPV-associated cervical neoplasia. It was postulated that the HPV antibodies were initiated after HPV antigenic stimulation at the cervix via the common mucosal immune system. The present study aimed to further evaluate the effectiveness of oral fluid testing for detecting the mucosal humoral response to HPV infection and to advance our limited understanding of the immune response to HPV. Methods: The prevalence of oral HPV infection and oral antibodies to HPV types 16, 18 and 11 was determined in a normal, healthy population of children, adolescents and adults, both male and female, attending a dental clinic. HPV types in buccal cells were determined by DNA sequencing. Oral fluid was collected from the gingival crevice of the mouth by the OraSure method. HPV-16, HPV-18 and HPV-11 antibodies in oral fluid were detected by virus-like particle-based enzyme-linked immunosorbent assay. As a reference group 44 women with cervical neoplasia were included in the study. Results: Oral HPV infection was h ighest in children (9/114, 7.9%), followed by adolescents (4/78, 5.1%), and lowest in normal adults (4/116, 3.5%). The predominant HPV type found was HPV-13 (7/22, 31.8%) followed by HPV-32 (5/22, 22.7%). The prevalence of oral antibodies to HPV-16, HPV-18 and HPV-11 was low in children and increased substantially in adolescents and normal adults. Oral HPV-16 IgA was significantly more prevalent in women with cervical neoplasia (30/44, 68.2%) than the women from the dental clinic (18/69, 26.1% P = 0.0001). Significantly more adult men than women displayed oral HPV-16 IgA (30/47 compared with 18/69, OR 5.0, 95% CI 2.09-12.1, P < 0.001) and HPV-18 IgA (17/47 compared with 13/69, OR 2.4, 95% CI 0.97-6.2, P = 0.04). Conclusion: The increased prevalence of oral HPV antibodies in adolescent individuals compared with children was attributed to the onset of sexual activity. The increased prevalence of oral anti-HPV IgA in men compared with women was noteworthy considering reportedly fewer men than women make serum antibodies, and warrants further investigation. © 2006 Marais et al; licensee BioMed Central Ltd.
Resumo:
Background. A variety of interactions between up to three different movement proteins (MPs), the coat protein (CP) and genomic DNA mediate the inter- and intra-cellular movement of geminiviruses in the genus Begomovirus. Although movement of viruses in the genus Mastrevirus is less well characterized, direct interactions between a single MP and the CP of these viruses is also clearly involved in both intra- and intercellular trafficking of virus genomic DNA. However, it is currently unknown how specific these MP-CP interactions are, nor how disruption of these interactions might impact on virus viability. Results. Using chimaeric genomes of two strains of Maize streak virus (MSV) we adopted a genetic approach to investigate the gross biological effects of interfering with interactions between virus MP and CP homologues derived from genetically distinct MSV isolates. MP and CP genes were reciprocally exchanged, individually and in pairs, between maize (MSV-Kom)- and Setaria sp. (MSV-Set)-adapted isolates sharing 78% genome-wide sequence identity. All chimaeras were infectious in Zea mays c.v. Jubilee and were characterized in terms of symptomatology and infection efficiency. Compared with their parental viruses, all the chimaeras were attenuated in symptom severity, infection efficiency, and the rate at which symptoms appeared. The exchange of individual MP and CP genes resulted in lower infection efficiency and reduced symptom severity in comparison with exchanges of matched MP-CP pairs. Conclusion. Specific interactions between the mastrevirus MP and CP genes themselves and/or their expression products are important determinants of infection efficiency, rate of symptom development and symptom severity. © 2008 van der Walt et al; licensee BioMed Central Ltd.
Resumo:
Maize streak virus (MSV; Genus Mastrevirus, Family Geminiviridae) occurs throughout Africa, where it causes what is probably the most serious viral crop disease on the continent. It is obligately transmitted by as many as six leafhopper species in the Genus Cicadulina, but mainly by C. mbila Naudé and C. storeyi. In addition to maize, it can infect over 80 other species in the Family Poaceae. Whereas 11 strains of MSV are currently known, only the MSV-A strain is known to cause economically significant streak disease in maize. Severe maize streak disease (MSD) manifests as pronounced, continuous parallel chlorotic streaks on leaves, with severe stunting of the affected plant and, usuallly, a failure to produce complete cobs or seed. Natural resistance to MSV in maize, and/or maize infections caused by non-maize-adapted MSV strains, can result in narrow, interrupted streaks and no obvious yield losses. MSV epidemiology is primarily governed by environmental influences on its vector species, resulting in erratic epidemics every 3-10 years. Even in epidemic years, disease incidences can vary from a few infected plants per field, with little associated yield loss, to 100% infection rates and complete yield loss. Taxonomy: The only virus species known to cause MSD is MSV, the type member of the Genus Mastrevirus in the Family Geminiviridae. In addition to the MSV-A strain, which causes the most severe form of streak disease in maize, 10 other MSV strains (MSV-B to MSV-K) are known to infect barley, wheat, oats, rye, sugarcane, millet and many wild, mostly annual, grass species. Seven other mastrevirus species, many with host and geographical ranges partially overlapping those of MSV, appear to infect primarily perennial grasses. Physical properties: MSV and all related grass mastreviruses have single-component, circular, single-stranded DNA genomes of approximately 2700 bases, encapsidated in 22 × 38-nm geminate particles comprising two incomplete T = 1 icosahedra, with 22 pentameric capsomers composed of a single 32-kDa capsid protein. Particles are generally stable in buffers of pH 4-8. Disease symptoms: In infected maize plants, streak disease initially manifests as minute, pale, circular spots on the lowest exposed portion of the youngest leaves. The only leaves that develop symptoms are those formed after infection, with older leaves remaining healthy. As the disease progresses, newer leaves emerge containing streaks up to several millimetres in length along the leaf veins, with primary veins being less affected than secondary or tertiary veins. The streaks are often fused laterally, appearing as narrow, broken, chlorotic stripes, which may extend over the entire length of severely affected leaves. Lesion colour generally varies from white to yellow, with some virus strains causing red pigmentation on maize leaves and abnormal shoot and flower bunching in grasses. Reduced photosynthesis and increased respiration usually lead to a reduction in leaf length and plant height; thus, maize plants infected at an early stage become severely stunted, producing undersized, misshapen cobs or giving no yield at all. Yield loss in susceptible maize is directly related to the time of infection: Infected seedlings produce no yield or are killed, whereas plants infected at later times are proportionately less affected. Disease control: Disease avoidance can be practised by only planting maize during the early season when viral inoculum loads are lowest. Leafhopper vectors can also be controlled with insecticides such as carbofuran. However, the development and use of streak-resistant cultivars is probably the most effective and economically viable means of preventing streak epidemics. Naturally occurring tolerance to MSV (meaning that, although plants become systemically infected, they do not suffer serious yield losses) has been found, which has primarily been attributed to a single gene, msv-1. However, other MSV resistance genes also exist and improved resistance has been achieved by concentrating these within individual maiz genotypes. Whereas true MSV immunity (meaning that plants cannot be symptomatically infected by the virus) has been achieved in lines that include multiple small-effect resistance genes together with msv-1, it has proven difficult to transfer this immunity into commercial maize genotypes. An alternative resistance strategy using genetic engineering is currently being investigated in South Africa. Useful websites: 〈http://www.mcb.uct.ac.za/MSV/mastrevirus.htm〉; 〈http://www. danforthcenter.org/iltab/geminiviridae/geminiaccess/mastrevirus/Mastrevirus. htm〉. © 2009 Blackwell Publishing Ltd.
Resumo:
Background Maize streak virus -strain A (MSV-A; Genus Mastrevirus, Family Geminiviridae), the maize-adapted strain of MSV that causes maize streak disease throughout sub-Saharan Africa, probably arose between 100 and 200 years ago via homologous recombination between two MSV strains adapted to wild grasses. MSV recombination experiments and analyses of natural MSV recombination patterns have revealed that this recombination event entailed the exchange of the movement protein - coat protein gene cassette, bounded by the two genomic regions most prone to recombination in mastrevirus genomes; the first surrounding the virion-strand origin of replication, and the second around the interface between the coat protein gene and the short intergenic region. Therefore, aside from the likely adaptive advantages presented by a modular exchange of this cassette, these specific breakpoints may have been largely predetermined by the underlying mechanisms of mastrevirus recombination. To investigate this hypothesis, we constructed artificial, low-fitness, reciprocal chimaeric MSV genomes using alternating genomic segments from two MSV strains; a grass-adapted MSV-B, and a maize-adapted MSV-A. Between them, each pair of reciprocal chimaeric genomes represented all of the genetic material required to reconstruct - via recombination - the highly maize-adapted MSV-A genotype, MSV-MatA. We then co-infected a selection of differentially MSV-resistant maize genotypes with pairs of reciprocal chimaeras to determine the efficiency with which recombination would give rise to high-fitness progeny genomes resembling MSV-MatA. Results Recombinants resembling MSV-MatA invariably arose in all of our experiments. However, the accuracy and efficiency with which the MSV-MatA genotype was recovered across all replicates of each experiment depended on the MSV susceptibility of the maize genotypes used and the precise positions - in relation to known recombination hotspots - of the breakpoints required to re-create MSV-MatA. Although the MSV-sensitive maize genotype gave rise to the greatest variety of recombinants, the measured fitness of each of these recombinants correlated with their similarity to MSV-MatA. Conclusions The mechanistic predispositions of different MSV genomic regions to recombination can strongly influence the accessibility of high-fitness MSV recombinants. The frequency with which the fittest recombinant MSV genomes arise also correlates directly with the escalating selection pressures imposed by increasingly MSV-resistant maize hosts.
Resumo:
Ab initio density functional theory (DFT) calculations are performed to explore possible catalytic effects on the dissociative chemisorption of hydrogen on a Mg(0001) surface when carbon is incorporated into Mg materials. The computational results imply that a C atom located initially on a Mg(0001) surface can migrate into the subsurface and occupy an fcc interstitial site, with charge transfer to the C atom from neighboring Mg atoms. The effect of subsurface C on the dissociation of H2 on the Mg(0001) surface is found to be relatively marginal: a perfect sublayer of interstitial C is calculated to lower the barrier by 0.16 eV compared with that on a pure Mg(0001) surface. Further calculations reveal, however, that sublayer C may have a significant effect in enhancing the diffusion of atomic hydrogen into the sublayers through fcc channels. This contributes new physical understanding toward rationalizing the experimentally observed improvement in absorption kinetics of H2 when graphite or single walled carbon nanotubes (SWCNT) are introduced into the Mg powder during ball milling.
Resumo:
Recent association studies in multiple sclerosis (MS) have identified and replicated several single nucleotide polymorphism (SNP) susceptibility loci including CLEC16A, IL2RA, IL7R, RPL5, CD58, CD40 and chromosome 12q13–14 in addition to the well established allele HLA-DR15. There is potential that these genetic susceptibility factors could also modulate MS disease severity, as demonstrated previously for the MS risk allele HLA-DR15. We investigated this hypothesis in a cohort of 1006 well characterised MS patients from South-Eastern Australia. We tested the MS-associated SNPs for association with five measures of disease severity incorporating disability, age of onset, cognition and brain atrophy. We observed trends towards association between the RPL5 risk SNP and time between first demyelinating event and relapse, and between the CD40 risk SNP and symbol digit test score. No associations were significant after correction for multiple testing. We found no evidence for the hypothesis that these new MS disease risk-associated SNPs influence disease severity.
Resumo:
Seven new and three known bisresorcinols, grevirobstol A(=5,5'-((6Z,9Z)-hexadeca-6,9-diene-1,16-diyl)bisresorcinol; 8), 5,5'-[(8Z)-hexadec-8-ene-1,16-diyl]bisresorcinol (9), and 2-methyl-5,5'-[8Z)-hexadec-8-ene-1,16-diyl] bisresorcinol (10) were isolated from the stems of Grevillea glauca. The new compounds were identified on the basis of spectroscopic data as (Z)-6,7-didehydroglaucone A (1), glaucones A and B (2 and 3, resp.), 2-(3-hydroxyisopentyl)bisnorstriatol (4), 2-(3-methylbut-2-en-1-yl)bisnorstriatol (5), 2'-methylgrebustol A (6), and glaucane (7).
Resumo:
Advanced grid stiffened composite cylindrical shell is widely adopted in advanced structures due to its exceptional mechanical properties. Buckling is a main failure mode of advanced grid stiffened structures in engineering, which calls for increasing attention. In this paper, the buckling response of advanced grid stiffened structure is investigated by three different means including equivalent stiffness model, finite element model and a hybrid model (H-model) that combines equivalent stiffness model with finite element model. Buckling experiment is carried out on an advanced grid stiffened structure to validate the efficiency of different modeling methods. Based on the comparison, the characteristics of different methods are independently evaluated. It is arguable that, by considering the defects of material, finite element model is a suitable numerical tool for the buckling analysis of advanced grid stiffened structures.
Resumo:
As the end of the Cold War approached in 1989, Caroline Thomas argued: “It is important that the discipline [International Relations, IR] should address the issue of disease and more broadly, health, not simply to facilitate containment of disease transmission across international borders but also because central notions of justice, equity, efficiency and order are involved” (1989:273).1 Ten years later, Craig Murphy echoed these sentiments. Murphy (2001: 352) proposed that IR had yet to grapple with the political consequences of growing inequality between the world’s rich and poor, and areas such as health—where these inequalities were most stark—should become the field’s core business. How IR’s theories and methods would approach these issues was less clear. Bettcher and Yach (1998) cautioned that IR would be unable to develop progressive research projects that explored global health diplomacy as a global public good without adopting new perspectives and methods. Others warned that the expansion of security studies into areas such as global health would weaken the intellectual coherency of the field (Walt 1991:213). Taking its cue from the recent Ng and Prah Ruger (2011) study, this paper returns to these concerns to briefly explore key trends and potential future concerns of research in IR on health...
Resumo:
The provision of visual support to individuals with an autism spectrum disorder (ASD) is widely recommended. We explored one mechanism underlying the use of visual supports: efficiency of language processing. Two groups of children, one with and one without an ASD, participated. The groups had comparable oral and written language skills and nonverbal cognitive abilities. In two semantic priming experiments, prime modality and prime–target relatedness were manipulated. Response time and accuracy of lexical decisions on the spoken word targets were measured. In the first uni-modal experiment, both groups demonstrated significant priming effects. In the second experiment which was cross-modal, no effect for relatedness or group was found. This result is considered in the light of the attentional capacity required for access to the lexicon via written stimuli within the developing semantic system. These preliminary findings are also considered with respect to the use of visual support for children with ASD.
Resumo:
A review of Philip Glass's opera The Perfect American. The Brisbane Festival’s production of Philip Glass’s opera The Perfect American is only the third production of the 2012 work ever to be staged. That’s quite a coup for the Brisbane Festival and Opera Queensland. The Perfect American was commissioned by Madrid’s Teatro Real and London’s English National Opera to mark the American composer’s 75th birthday. Glass’s telling of the Disney myth focuses on the final stages of Walt Disney’s life and career – a high art critique of a popular culture icon...