115 resultados para Water-supply engineering.


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The author's approach to the problems associated with building in bushfire prone landscapes comes from 12 years of study of the biophysical and cultural landscapes in the Great Southern Region of Western Australia - research which resulted in the design and construction of the H-house at Bremer Bay. The house was developed using a 'ground up' approach whereby Dr Weir conducted topographical surveys and worked with a local botanist and a bushfire risk consultant to ascertain the level of threat that fire presented to this particular site. The intention from the outset however, was not to design a bushfire resistant house per se, but to develop a design which would place the owners in close proximity to the highly biodiverse heath vegetation of their site. The research aim was to find ways - through architectural design-to link the patterns of usage of the house with other site specific conditions related to the prevailing winds, solar orientation and seasonal change. The H-house has a number of features which increase the level of bushfire safety. These include: Fire rated roller shutters (tested by the CSIRO for ember attack and radiant heat), Fire resistant double glazing (on windows not protected by the shutters), Fibre-cement sheet cladding of the underside of the elevated timber floor structure, Manually operated high pressure sprinkler system on exposed timber decks, A fire refuge (an enlarged laundry, shower area) within the house with a dedicated cabinet for fire fighting equipment) and A low pressure solar powered domestic water supply system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Water environments are greatly valued in urban areas as ecological and aesthetic assets. However, it is the water environment that is most adversely affected by urbanisation. Urban land use coupled with anthropogenic activities alters the stream flow regime and degrade water quality with urban stormwater being a significant source of pollutants. Unfortunately, urban water pollution is difficult to evaluate in terms of conventional monetary measures. True costs extend beyond immediate human or the physical boundaries of the urban area and affect the function of surrounding ecosystems. Current approaches for handling stormwater pollution and water quality issues in urban landscapes are limited as these are primarily focused on ‘end-of-pipe’ solutions. The approaches are commonly based either on, insufficient design knowledge, faulty value judgements or inadequate consideration of full life cycle costs. It is in this context that the adoption of a triple bottom line approach is advocated to safeguard urban water quality. The problem of degradation of urban water environments can only be remedied through innovative planning, water sensitive engineering design and the foresight to implement sustainable practices. Sustainable urban landscapes must be designed to match the triple bottom line needs of the community, starting with ecosystem services first such as the water cycle, then addressing the social and immediate ecosystem health needs, and finally the economic performance of the catchment. This calls for a cultural change towards urban water resources rather than the current piecemeal and single issue focus approach. This paper discusses the challenges in safeguarding urban water environments and the limitations of current approaches. It then explores the opportunities offered by integrating innovative planning practices with water engineering concepts into a single cohesive framework to protect valuable urban ecosystem assets. Finally, a series of recommendations are proposed for protecting urban water resources within the context of a triple bottom line approach.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The increasing scarcity of water in the world, along with rapid population increase in urban areas, gives reason for concern and highlights the need for integrating water and wastewater management practices. The uncontrolled growth in urban areas has made planning, management and expansion of water and wastewater infrastructure systems very difficult and expensive. In order to achieve sustainable wastewater treatment and promote the conservation of water and nutrient resources, this chapter advocates the need for a closed-loop treatment system approach, and the transformation of the traditional linear treatment systems into integrated cyclical treatment systems. The recent increased understanding of integrated resource management and a shift towards sustainable management and planning of water and wastewater infrastructure are also discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Government of Indonesia (GoI) increasingly relies on the private sector financing to build and operate infrastructures through public private partnership (PPP) schemes. However, PPP does not automatically provide the solution for the financing scheme due to value for money (VFM) issues. The procurement authority must show whether a PPP proposal is the optimal solution that provides best VFM outcome. The paper presents a literature review of comparing quantitative VFM methodology for PPP infrastructure project procurement in Indonesia and Australia. Public Sector Comparator (PSC) is used to assess the potential project VFM quantitatively in Australia. In Indonesia, the PSC has not been applied, where the PPP procurement authority tends to utilize a common project evaluation method that ignores the issues of risk. Unlike the conventional price bid evaluation, the PSC enables a financial comparison including costs/gains and risks. Since the construction of PSC is primarily on risk management approach, it can facilitate risk negotiation processes between the involved parties. The study indicates that the quantitative VFM methodology of PSC is potentially applicable in Indonesia for water supply sector. Various supporting regulations are available that emphasize the importance of VFM and risk management in infrastructure investment. However, the study also reveals a number of challenges that need to be anticipated, such as the need of a more comprehensive PPP policy at both central and local government level, a more specific legal instrument for bidding evaluation method and the issue of institutional capacity development in PPP Units at the local level.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pipe insulation between the collector and storage tank on pumped storage (commonly called split), solar water heaters can be subject to high temperatures, with a maximum equal to the collector stagnation temperature. The frequency of occurrence of these temperatures is dependent on many factors including climate, hot water demand, system size and efficiency. This paper outlines the findings of a computer modelling study to quantify the frequency of occurrence of pipe temperatures of 80 degrees Celsius or greater at the outlet of the collectors for these systems. This study will help insulation suppliers determine the suitability of their materials for this application. The TRNSYS program was used to model the performance of a common size of domestic split solar system, using both flat plate and evacuated tube, selective surface collectors. Each system was modelled at a representative city in each of the 6 climate zones for Australia and New Zealand, according to AS/NZS4234 - Heat Water Systems - Calculation of energy consumption, and the ORER RECs calculation method. TRNSYS was used to predict the frequency of occurrence of the temperatures that the pipe insulation would be exposed to over an average year, for hot water consumption patterns specified in AS/NZS4234, and for worst case conditions in each of the climate zones. The results show; * For selectively surfaced, flat plate collectors in the hottest location (Alice Sprints) with a medium size hot water demand according to AS/NZS2434, the annual frequency of occurrence of temperatures at and above 80 degrees Celsius was 33 hours. The frequency of temperatures at and above 140 degrees Celsius was insignificant. * For evacuated tube collectors in the hottest location (Alice Springs), the annual frequency of temperatures at and above 80 degrees Celsius was 50 hours. Temperatures at and above 140 degrees Celsius were significant and were estimated to occur for more than 21 hours per year in this climate zone. Even in Melbourne, temperatures at and above 80 degrees can occur for 12 hours per year and at and above 140 degrees for 5 hours per year. * The worst case identified was for evacuated tube collectors in Alice Springs, with mostly afternoon loads in January. Under these conditions, the frequency of temperatures at and above 80 degrees Celsius was 10 hours for this month only. Temperatures at and above 140 degrees Celsius were predicted to occur for 5 hours in January.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Appropriate pipe insulation on domestic, pumped storage (split), solar water heating systems forms an integral part of energy conservation measures of well engineered systems. However, its importance over the life of the system is often overlooked. This study outlines the findings of computer modelling to quantify the energy and cost savings by using pipe insulation between the collector and storage tank. System sizes of 270 Litre storage tank, together with either selectively surfaced, flat plate collectors (4m2 area), or 30 evacuated tube collectors, were used. Insulation thicknesses of 13mm and 15mm, pipe runs both ways of 10, 15 and 20 metres and both electric and gas boosting of systems were all considered. The TRNSYS program was used to model the system performance at a representative city in each of the 6 climate zones for Australia and New Zealand, according to AS/NZS4234 – Heat Water Systems – Calculation of energy consumption and the ORER RECs calculation method. The results show:  Energy savings from pipe insulation are very significant, even in mild climates such as Rockhampton. Across all climates zones, savings ranged from 0.16 to 3.5GJ per system per year, or about 2 to 23 percent of the annual load.  There is very little advantage in increasing the insulation thickness from 13 to 15mm. For electricity at 19c/kWh and gas at 2 c/MJ, cost savings of between $27 and $100 per year are achieved across the climate zones. Both energy and cost savings would increase in colder climates with increased system size, solar contribution and water temperatures.  The pipe insulation substantially improves the solar contribution (or fraction) and Renewable Energy Certificates (RECs), as well as giving small savings in circulating pump running costs in milder climates. Solar contribution increased by up to 23 percent points and RECs by over 7 in some cases.  The study highlights the need to install and maintain the integrity of appropriate pipe insulation on solar water heaters over their life time in Australia and New Zealand.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper examines the interactions between knowledge and power in the adoption of technologies central to municipal water supply plans, specifically investigating decisions in Progressive Era Chicago regarding water meters. The invention and introduction into use of the reliable water meter early in the Progressive Era allowed planners and engineers to gauge water use, and enabled communities willing to invest in the new infrastructure to allocate costs for provision of supply to consumers relative to use. In an era where efficiency was so prized and the role of technocratic expertise was increasing, Chicago’s continued failure to adopt metering (despite levels of per capita consumption nearly twice that of comparable cities and acknowledged levels of waste nearing half of system production) may indicate that the underlying characteristics of the city’s political system and its elite stymied the implementation of metering technologies as in Smith’s (1977) comparative study of nineteenth century armories. Perhaps, as with Flyvbjerg’s (1998) study of the city of Aalborg, the powerful know what they want and data will not interfere with their conclusions: if the data point to a solution other than what is desired, then it must be that the data are wrong. Alternatively, perhaps the technocrats failed adequately to communicate their findings in a language which the political elite could understand, with the failure lying in assumptions of scientific or technical literacy rather than with dissatisfaction in outcomes (Benveniste 1972). When examined through a historical institutionalist perspective, the case study of metering adoption lends itself to exploration of larger issues of knowledge and power in the planning process: what governs decisions regarding knowledge acquisition, how knowledge and power interact, whether the potential to improve knowledge leads to changes in action, and, whether the decision to overlook available knowledge has an impact on future decisions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Protecting slow sand filters (SSFs) from high-turbidity waters by pretreatment using pebble matrix filtration (PMF) has previously been studied in the laboratory at University College London, followed by pilot field trials in Papua New Guinea and Serbia. The first full-scale PMF plant was completed at a water-treatment plant in Sri Lanka in 2008, and during its construction, problems were encountered in sourcing the required size of pebbles and sand as filter media. Because sourcing of uniform-sized pebbles may be problematic in many countries, the performance of alternative media has been investigated for the sustainability of the PMF system. Hand-formed clay balls made at a 100-yearold brick factory in the United Kingdom appear to have satisfied the role of pebbles, and a laboratory filter column was operated by using these clay balls together with recycled crushed glass as an alternative to sand media in the PMF. Results showed that in countries where uniform-sized pebbles are difficult to obtain, clay balls are an effective and feasible alternative to natural pebbles. Also, recycled crushed glass performed as well as or better than silica sand as an alternative fine media in the clarification process, although cleaning by drainage was more effective with sand media. In the tested filtration velocity range of ð0:72–1:33Þ m=h and inlet turbidity range of (78–589) NTU, both sand and glass produced above 95% removal efficiencies. The head loss development during clogging was about 30% higher in sand than in glass media.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Verification testing of two model technologies in pilot scale to remove arsenic and antimony based on reverse osmosis and chemical coagulation/filtration systems was conducted in Spiro Tunnel Water Filtration Plant located in Park City, Utah, US. The source water was groundwater in abandoned silver mine, naturally contaminated by 60-80 ppb of arsenic and antimony below 10 ppb. This water represents one of the sources of drinking water for Park City and constitutes about 44% of the water supply. The failure to remove antimony efficiently by coagulation/filtration (only 4.4% removal rate) under design conditions is discussed in terms of the chemistry differences between Sb (III, V) and As (III, V). Removal of Sb(V) at pH > 7, using coagulation/filtration technology, requires much higher (50 to 80 times) concentration of iron (III) than As. The stronger adsorption of arsenate over a wider pH range can be explained by the fact that arsenic acid is tri-protic, whereas antimonic acid is monoprotic. This difference in properties of As(V) and Sb(V) makes antimony (V) more difficult to be efficiently removed in low concentrations of iron hydroxide and alkaline pH waters, especially in concentration of Sb < 10 ppb.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Water resources are known to contain radioactive materials, either from natural or anthropogenic sources. Treatment, including wastewater treatment, of water for drinking, domestic, agricultural and industrial purposes has the potential to concentrate radioactive materials. Inevitably concentrated radioactive material is discharged to the environment as a waste product, reused for soil conditioning, or perhaps recycled as a new potable water supply. This thesis, presented as a collection of peer reviewed scientific papers, explores a number of water / wastewater treatment applications, and the subsequent nature and potential impact of radioactive residues associated with water exploitation processes. The thesis draws together research outcomes for sites predominantly throughout Queensland, Australia, where it is recognised that there is a paucity of published data on the subject. This thesis contributes to current knowledge on the monitoring, assessment and potential for radiation exposure from radioactive residues associated with the water industry.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Current urban development in South East Queensland (SEQ) is impacted by a number of factors: growth and sprawl eroding subtropical character and identity; changing demographics and housing needs; lack of developable land; rising transport costs; diminishing fresh water supply; high energy consumption; and generic building designs which ignore local climate, landscape and lifestyle conditions. The Subtropical Row House project sought to research ‘best practice’ planning and design for contemporary and future needs for urban development in SEQ, and stimulate higher-density housing responses that achieve sustainable, low-energy and low water outcomes and support subtropical character and identity by developing a workable new typology for homes that the local market can adopt. The methodology was that of charrette, an established methodology in architecture and design. Four leading Queensland architectural firms were invited to form multidisciplinary creative teams. During the two-day charrette, the teams visited a selected greenfield site, defined the problems and issues, developed ideas and solutions, and benchmarked performance of designs using the Australian Green Building Council’s Pilot Green Star Multi-Unit residential tool. Each of the four resulting designs simultaneously express a positive relationship with climate and place by demonstrating: suitability for the subtropical climate; flexibility for a diversity of households; integrated building/site/vegetation strategies; market appeal to occupants and developers; affordability in operation; constructability by ‘domestic’ builders; and reduced energy, water and wastage. The project was awarded a Regional Commendation by the Australian Institute of Architects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Increased or fluctuating resources may facilitate opportunities for invasive exotic plants to dominate. This hypothesis does not, however, explain how invasive species succeed in regions characterized by low resource conditions or how these species persist in the lulls between high resource periods. We compare the growth of three co-occurring C4 perennial bunchgrasses under low resource conditions: an exotic grass, Eragrostis curvula (African lovegrass) and two native grasses, Themeda triandra and Eragrostis sororia. We grew each species over 12 weeks under low nutrients and three low water regimes differentiated by timing: continuous, pulsed, and mixed treatments (switched from continuous to pulsed and back to continuous). Over time, we measured germination rates, time to germination (first and second generations), height, root biomass, vegetative biomass, and reproductive biomass. Contrary to our expectations that the pulsed watering regime would favor the invader, water-supply treatments had little significant effect on plant growth. We did find inherent advantages in a suite of early colonization traits that likely favor African lovegrass over the natives including faster germination speed, earlier flowering times, faster growth rates and from 2 weeks onward it was taller. African lovegrass also showed similar growth allocation strategies to the native grasses in terms of biomass levels belowground, but produced more vegetative biomass than kangaroo grass. Overall our results suggest that even under low resource conditions invasive plant species like African lovegrass can grow similarly to native grasses, and for some key colonization traits, like germination rate, perform better than natives.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Lockyer Valley is situated 80 km west of Brisbane and is bounded on the sou th and west by the Great Dividing Range. The valley is a major western sub - catchment of the larger Brisbane River drainage system and is drained by the Lockyer Creek. The Lockyer catchment forms approximately 20% of the total Brisbane River catchment and has an area of around 2900 km2. The Lockyer Creek is an ephemeral drainage system, and the stream and associated alluvium are the main source for irrigation water supply in the Lockyer Valley. The catchment is comprised of a number of well -defined, elongate tributaries in the south, and others in the north, which are more meandering in nature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Surface water and groundwater are the most important water sources in the natural environment. Land use and seasonal factors play an important role in influencing the quality of these water sources. An in-depth understanding of the role of these two influential factors can help to implement an effective catchment management strategy for the protection of these water sources. This paper discusses the outcomes of an extensive research study which investigated the role of land use and seasonal factors on surface water and groundwater pollution in a mixed land use coastal catchment. The study confirmed that the influence exerted on the water environment by seasonal factors is secondary to that of land use. Furthermore, the influence of land use and seasonal factors on surface water and groundwater quality varies with the pollutant species. This highlights the need to specifically take into consideration the targeted pollutants and the key influential factors for the effective protection of vulnerable receiving water environments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The current approach for protecting the receiving water environment from urban stormwater pollution is the adoption of structural measures commonly referred to as Water Sensitive Urban Design (WSUD). The treatment efficiency of WSUD measures closely depends on the design of the specific treatment units. As stormwater quality can be influenced by rainfall characteristics, the selection of appropriate rainfall events for treatment design is essential to ensure the effectiveness of WSUD systems. Based on extensive field investigation of four urban residential catchments and computer modelling, this paper details a technically robust approach for the selection of rainfall events for stormwater treatment design using a three-component model. The modelling outcomes indicate that selecting smaller average recurrence interval (ARI) events with high intensity-short duration as the threshold for the treatment system design is the most feasible since these events cumulatively generate a major portion of the annual pollutant load compared to the other types of rainfall events, despite producing a relatively smaller runoff volume. This implies that designs based on small and more frequent rainfall events rather than larger rainfall events would be appropriate in the context of efficiency in treatment performance, cost-effectiveness and possible savings in land area needed.