327 resultados para Waste water


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study reports the synthesis, characterization and application of nano zero-valent iron (nZVI). The nZVI was produced by a reduction method and compared with commercial available ZVI powder for Pb2+ removal from aqueous phase. Comparing with commercial ZVI, the laboratory made nZVI powder has a much higher specific surface area. XRD patterns have revealed zero valent iron phases in two ZVI materials. Different morphologies have been observed using SEM and TEM techniques. EDX spectrums revealed even distribution of Pb on surface after reaction. The XPS analysis has confirmed that immobilized lead was present in its zero-valent and bivalent forms. ‘Core-shell’ structure of prepared ZVI was revealed based on combination of XRD and XPS characterizations. In addition, comparing with Fluka ZVI, this lab made nZVI has much higher reactivity towards Pb2+ and within just 15 mins 99.9% removal can be reached. This synthesized nano ZVI material has shown great potential for heavy metal immobilization from waste water.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report rapid and ultra-sensitive detection system for 2,4,6-trinitrotoluene (TNT) using unmodified gold nanoparticles and surface-enhanced Raman spectroscopy (SERS). First, Meisenheimer complex has been formed in aqueous solution between TNT and cysteamine in less than 15 min of mixing. The complex formation is confirmed by the development of a pink colour and a new UV–vis absorption band around 520 nm. Second, the developed Meisenheimer complex is spontaneously self-assembled onto unmodified gold nanoparticles through a stable Au–S bond between the cysteamine moiety and the gold surface. The developed mono layer of cysteamine-TNT is then screened by SERS to detect and quantify TNT. Our experimental results demonstrate that the SERS-based assay provide an ultra-sensitive approach for the detection of TNT down to 22.7 ng/L. The unambiguous fingerprint identification of TNT by SERS represents a key advantage for our proposed method. The new method provides high selectivity towards TNT over 2,4 DNT and picric acid. Therefore it satisfies the practical requirements for the rapid screening of TNT in real life samples where the interim 24-h average allowable concentration of TNT in waste water is 0.04 mg/L.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The 3D Water Chemistry Atlas is an intuitive, open source, Web-based system that enables the three-dimensional (3D) sub-surface visualization of ground water monitoring data, overlaid on the local geological model (formation and aquifer strata). This paper firstly describes the results of evaluating existing virtual globe technologies, which led to the decision to use the Cesium open source WebGL Virtual Globe and Map Engine as the underlying platform. Next it describes the backend database and search, filtering, browse and analysis tools that were developed to enable users to interactively explore the groundwater monitoring data and interpret it spatially and temporally relative to the local geological formations and aquifers via the Cesium interface. The result is an integrated 3D visualization system that enables environmental managers and regulators to assess groundwater conditions, identify inconsistencies in the data, manage impacts and risks and make more informed decisions about coal seam gas extraction, waste water extraction, and water reuse.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes the 3D Water Chemistry Atlas - an open source, Web-based system that enables the three-dimensional (3D) sub-surface visualization of ground water monitoring data, overlaid on the local geological model. Following a review of existing technologies, the system adopts Cesium (an open source Web-based 3D mapping and visualization interface) together with a PostGreSQL/PostGIS database, for the technical architecture. In addition a range of the search, filtering, browse and analysis tools were developed that enable users to interactively explore the groundwater monitoring data and interpret it spatially and temporally relative to the local geological formations and aquifers via the Cesium interface. The result is an integrated 3D visualization system that enables environmental managers and regulators to assess groundwater conditions, identify inconsistencies in the data, manage impacts and risks and make more informed decisions about activities such as coal seam gas extraction, waste water extraction and re-use.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Batch, column and field lysimeter studies have been conducted to evaluate the concept of codisposal of retort water with Rundle (Queensland, Australia) waste shales. The batch studies indicated that degradation of a significant proportion of the total organic load occurs if the mixture is seeded with soil or compost. These results are compared with those from laboratory column studies and from the field lysimeter at the Rundle site. G.c.-m.s. analysis of some of the eluants indicated that significant degradation of the base-neutral fraction occurs even if no soil seed is added, and that degradation of this fraction was higher under anaerobic conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The low temperature operation of a heat pump makes it an excellent match for the use of solar energy. At the National University of Singapore, a solar assisted heat pump system has been designed, fabricated and installed to provide water heating and drying. The system also utilizes the air con waste heat, which would normally be released to atmosphere adding to global warming. Experimental results show that the twophase unglazed solar evaporator-collector, instead of losing energy to the ambient, gained a significant amount due to low operating temperature of the collector. As a result, the collector efficiency attains a value greater than 1, when conventional collector equations are used. With this evaporator-collector, the system can be operated even in the absence of solar irradiation. The waste heat was collected from an air-con system, which maintained a room at 20-22 oC. In the condenser side, water at 60 oC was produced at a rate of 3 liter/minute and the drying capacity was 2.2kg/hour. Maximum COP of the system was found to be about 5.5.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Australia and many other countries worldwide, water used in the manufacture of concrete must be potable. At present, it is currently thought that concrete properties are highly influenced by the water type used and its proportion in the concrete mix, but actually there is little knowledge of the effects of different, alternative water sources used in concrete mix design. Therefore, the identification of the level and nature of contamination in available water sources and their subsequent influence on concrete properties is becoming increasingly important. Of most interest, is the recycled washout water currently used by batch plants as mixing water for concrete. Recycled washout water is the water used onsite for a variety of purposes, including washing of truck agitator bowls, wetting down of aggregate and run off. This report presents current information on the quality of concrete mixing water in terms of mandatory limits and guidelines on impurities as well as investigating the impact of recycled washout water on concrete performance. It also explores new sources of recycled water in terms of their quality and suitability for use in concrete production. The complete recycling of washout water has been considered for use in concrete mixing plants because of the great benefit in terms of reducing the cost of waste disposal cost and environmental conservation. The objective of this study was to investigate the effects of using washout water on the properties of fresh and hardened concrete. This was carried out by utilizing a 10 week sampling program from three representative sites across South East Queensland. The sample sites chosen represented a cross-section of plant recycling methods, from most effective to least effective. The washout water samples collected from each site were then analysed in accordance with Standards Association of Australia AS/NZS 5667.1 :1998. These tests revealed that, compared with tap water, the washout water was higher in alkalinity, pH, and total dissolved solids content. However, washout water with a total dissolved solids content of less than 6% could be used in the production of concrete with acceptable strength and durability. These results were then interpreted using chemometric techniques of Principal Component Analysis, SIMCA and the Multi-Criteria Decision Making methods PROMETHEE and GAIA were used to rank the samples from cleanest to unclean. It was found that even the simplest purifying processes provided water suitable for the manufacture of concrete form wash out water. These results were compared to a series of alternative water sources. The water sources included treated effluent, sea water and dam water and were subject to the same testing parameters as the reference set. Analysis of these results also found that despite having higher levels of both organic and inorganic properties, the waters complied with the parameter thresholds given in the American Standard Test Method (ASTM) C913-08. All of the alternative sources were found to be suitable sources of water for the manufacture of plain concrete.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sodium niobates doped with different amount of tantalum (TaV) were prepared via thermal reaction process. It was found pure nanofibril and bar-like solids can be obtained when tantalum was introduced into the reaction system. For the well-crystallized fibril solids, the Na+ ions are difficult to be exchanged, and the radioactive ions such as Sr2+ and Ra2+ ions just deposit on the surface of the fibers during the sorption process, resulting in lower sorption capacity and distribution coefficients (Kd)`. However, the bar-like solids are poorly-crystallized and have lots of exchangeable Na+ ions. They are able to remove highly hazardous bivalent radioactive isotopes such as Sr2+ and Ra2+ ions. Even in the presence of lots of Na+ ions, they also have higher Kd. More importantly, such sorption finally intelligently triggers considerable collapse of the structure, resulting in the entrapment of the toxic bivalent cations permanently in the solids so that they can be safely disposed. This study highlights new opportunities for the preparation of Nb-based adsorbents to efficiently remove the toxic radioactive ions from contaminated water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper examines the interactions between knowledge and power in the adoption of technologies central to municipal water supply plans, specifically investigating decisions in Progressive Era Chicago regarding water meters. The invention and introduction into use of the reliable water meter early in the Progressive Era allowed planners and engineers to gauge water use, and enabled communities willing to invest in the new infrastructure to allocate costs for provision of supply to consumers relative to use. In an era where efficiency was so prized and the role of technocratic expertise was increasing, Chicago’s continued failure to adopt metering (despite levels of per capita consumption nearly twice that of comparable cities and acknowledged levels of waste nearing half of system production) may indicate that the underlying characteristics of the city’s political system and its elite stymied the implementation of metering technologies as in Smith’s (1977) comparative study of nineteenth century armories. Perhaps, as with Flyvbjerg’s (1998) study of the city of Aalborg, the powerful know what they want and data will not interfere with their conclusions: if the data point to a solution other than what is desired, then it must be that the data are wrong. Alternatively, perhaps the technocrats failed adequately to communicate their findings in a language which the political elite could understand, with the failure lying in assumptions of scientific or technical literacy rather than with dissatisfaction in outcomes (Benveniste 1972). When examined through a historical institutionalist perspective, the case study of metering adoption lends itself to exploration of larger issues of knowledge and power in the planning process: what governs decisions regarding knowledge acquisition, how knowledge and power interact, whether the potential to improve knowledge leads to changes in action, and, whether the decision to overlook available knowledge has an impact on future decisions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water resources are known to contain radioactive materials, either from natural or anthropogenic sources. Treatment, including wastewater treatment, of water for drinking, domestic, agricultural and industrial purposes has the potential to concentrate radioactive materials. Inevitably concentrated radioactive material is discharged to the environment as a waste product, reused for soil conditioning, or perhaps recycled as a new potable water supply. This thesis, presented as a collection of peer reviewed scientific papers, explores a number of water / wastewater treatment applications, and the subsequent nature and potential impact of radioactive residues associated with water exploitation processes. The thesis draws together research outcomes for sites predominantly throughout Queensland, Australia, where it is recognised that there is a paucity of published data on the subject. This thesis contributes to current knowledge on the monitoring, assessment and potential for radiation exposure from radioactive residues associated with the water industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A synthetic reevesite-like material has been shown to decolorize selected dyes and degrade phenolic contaminants photocatalytically in water when irradiated with visible light. This material can photoactively decolorize dyes such as bromophenol blue, bromocresol green, bromothymol blue, thymol blue and methyl orange in less than 15 min under visible light radiation in the absence of additional oxidizing agents. Conversely, phenolic compounds suc has phenol, p-chlorophenol and p-nitrophenol are photocat- alytically degraded in approximately 3hwith additional H2O2 when irradiated with visible light. These reactions offer potentially energy effective pathways for the removal of recalcitrant organic waste contaminants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Management of the industrial nations' hazardous waste is a current and exponentially increasing, global threatening situation. Improved environmental information must be obtained and managed concerning the current status, temporal dynamics and potential future status of these critical sites. To test the application of spatial environmental techniques to the problem of hazardous waste sites, as Superfund (CERCLA) test site was chosen in an industrial/urban valley experiencing severe TCE, PCE, and CTC ground water contamination. A paradigm is presented for investigating spatial/environmental tools available for the mapping, monitoring and modelling of the environment and its toxic contaminated plumes. This model incorporates a range of technical issues concerning the collection of data as augmented by remotely sensed tools, the format and storage of data utilizing geographic information systems, and the analysis and modelling of environment through the use of advance GIS analysis algorithms and geophysic models of hydrologic transport including statistical surface generation. This spatial based approach is evaluated against the current government/industry standards of operations. Advantages and lessons learned of the spatial approach are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Desalination is considered one of the most suitable areas for the utilization of solar energy, as there are many places in the world where abundant supply of solar energy is available and also there is a great demand for fresh water. An integrated solar heat pump desalination system has been developed at the National University of Singapore. The system also offers the opportunity of water heating and drying utilizing solar, ambient energy and waste heat from air conditioning system, which is conventionally dumped into the environment causing global warming. Desalination is carried out by making use of a single effect of Multi-Effect Distillation (MED) system. Within the desalination chamber, both fl ashing and evaporation of saline water take place. The maximum Coefficient of Performance (COP) of the heat pump system was around 5.8. In the integrated system, the maximum fresh water production rate was 9.6 l h−1 and a Performance Ratio (PR) of 1.2. For only desalination, the system has the potential to produce a maximum of 30 l h−1 of fresh water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pebble matrix filtration (PMF) is a water treatment technology that can remove suspended solids in highly turbid surface water during heavy storms. PMF typically uses sand and natural pebbles as filter media. Hand-made clay pebbles (balls) can be used as alternatives to natural pebbles in PMF treatment plants, where natural pebbles are not readily available. Since the high turbidity is a seasonal problem that occurs during heavy rains, the use of newly developed composite clay balls instead of pure clay balls have the advantage of removing other pollutants such as natural organic matter (NOM) during other times. Only the strength properties of composite clay balls are described here as the pollutant removal is beyond the scope of this paper. These new composite clay balls must be able to withstand dead and live loads under dry and saturated conditions in a filter assembly. Absence of a standard ball preparation process and expected strength properties of composite clay balls were the main reasons behind the present study. Five different raw materials from industry wastes: Red Mud (RM), Water Treatment Alum Sludge (S), Shredded Paper (SP), Saw Dust (SD), and Sugar Mulch (SM) were added to common clay brick mix (BM) in different proportions. In an effort to minimize costs, in this study clay balls were fired to 1100 0C at a local brick factory together with their bricks. A comprehensive experimental program was performed to evaluate crushing strength of composite hand-made clay balls, using uniaxial compression test to establish the best material combination on the basis of strength properties for designing sustainable filter media for water treatment plants. Performance at both construction and operating stages were considered by analyzing both strength properties under fully dry conditions and strength degradation after saturation in a water bath. The BM-75% as the main component produced optimum combination in terms of workability and strength. With the material combination of BM-75% and additives-25%, the use of Red Mud and water treatment sludge as additives produced the highest and lowest strength of composite clay balls, with a failure load of 5.4 kN and 1.4 kN respectively. However, this lower value of 1.4 kN is much higher than the effective load on each clay ball of 0.04 kN in a typical filter assembly (safety factor of 35), therefore, can still be used as a suitable filter material for enhanced pollutant removal.