418 resultados para Time duration
Resumo:
This article explores an important temporal aspect of the design of strategic alliances by focusing on the issue of time bounds specification. Time bounds specification refers to a choice on behalf of prospective alliance partners at the time of alliance formation to either pre-specify the duration of an alliance to a specific time window, or to keep the alliance open-ended (Reuer & Ariňo, 2007). For instance, Das (2006) mentions the example of the alliance between Telemundo Network and Mexican Argos Comunicacion (MAC). Announced in October 2000, this alliance entailed a joint production of 1200 hours of comedy, news, drama, reality and novella programs (Das, 2006). Conditioned on the projected date of completing the 1200 hours of programs, Telemundo Network and MAC pre-specified the time bounds of the alliance ex ante. Such time-bound alliances are said to be particularly prevalent in project-based industries, like movie production, construction, telecommunications and pharmaceuticals (Schwab & Miner, 2008). In many other instances, however, firms may choose to keep their alliances open-ended, not specifying a specific time bound at the time of alliance formation. The choice between designing open-ended alliances that are “built to last”, versus time bound alliances that are “meant to end” is important. Seminal works like Axelrod (1984), Heide & Miner (1992), and Parkhe (1993) demonstrated that the choice to place temporal bounds on a collaborative venture has important implications. More specifically, collaborations that have explicit, short term time bounds (i.e. what is termed a shorter “shadow of the future”) are more likely to experience opportunism (Axelrod, 1984), are more likely to focus on the immediate present (Bakker, Boros, Kenis & Oerlemans, 2012), and are less likely to develop trust (Parkhe, 1993) than alliances for which time bounds are kept indeterminate. These factors, in turn, have been shown to have important implications for the performance of alliances (e.g. Kale, Singh & Perlmutter, 2000). Thus, there seems to be a strong incentive for organizations to form open-ended strategic alliances. And yet, Reuer & Ariňo (2007), one of few empirical studies that details the prevalence of time-bound and open-ended strategic alliances, found that about half (47%) of the alliances in their sample were time bound, the other half were open-ended. What conditions, then, determine this choice?
Resumo:
We conducted an in-situ X-ray micro-computed tomography heating experiment at the Advanced Photon Source (USA) to dehydrate an unconfined 2.3 mm diameter cylinder of Volterra Gypsum. We used a purpose-built X-ray transparent furnace to heat the sample to 388 K for a total of 310 min to acquire a three-dimensional time-series tomography dataset comprising nine time steps. The voxel size of 2.2 μm3 proved sufficient to pinpoint reaction initiation and the organization of drainage architecture in space and time. We observed that dehydration commences across a narrow front, which propagates from the margins to the centre of the sample in more than four hours. The advance of this front can be fitted with a square-root function, implying that the initiation of the reaction in the sample can be described as a diffusion process. Novel parallelized computer codes allow quantifying the geometry of the porosity and the drainage architecture from the very large tomographic datasets (20483 voxels) in unprecedented detail. We determined position, volume, shape and orientation of each resolvable pore and tracked these properties over the duration of the experiment. We found that the pore-size distribution follows a power law. Pores tend to be anisotropic but rarely crack-shaped and have a preferred orientation, likely controlled by a pre-existing fabric in the sample. With on-going dehydration, pores coalesce into a single interconnected pore cluster that is connected to the surface of the sample cylinder and provides an effective drainage pathway. Our observations can be summarized in a model in which gypsum is stabilized by thermal expansion stresses and locally increased pore fluid pressures until the dehydration front approaches to within about 100 μm. Then, the internal stresses are released and dehydration happens efficiently, resulting in new pore space. Pressure release, the production of pores and the advance of the front are coupled in a feedback loop.
Resumo:
Assessing and prioritising cost-effective strategies to mitigate the impacts of traffic incidents and accidents on non-recurrent congestion on major roads represents a significant challenge for road network managers. This research examines the influence of numerous factors associated with incidents of various types on their duration. It presents a comprehensive traffic incident data mining and analysis by developing an incident duration model based on twelve months of incident data obtained from the Australian freeway network. Parametric accelerated failure time (AFT) survival models of incident duration were developed, including log-logistic, lognormal, and Weibul-considering both fixed and random parameters, as well as a Weibull model with gamma heterogeneity. The Weibull AFT models with random parameters were appropriate for modelling incident duration arising from crashes and hazards. A Weibull model with gamma heterogeneity was most suitable for modelling incident duration of stationary vehicles. Significant variables affecting incident duration include characteristics of the incidents (severity, type, towing requirements, etc.), and location, time of day, and traffic characteristics of the incident. Moreover, the findings reveal no significant effects of infrastructure and weather on incident duration. A significant and unique contribution of this paper is that the durations of each type of incident are uniquely different and respond to different factors. The results of this study are useful for traffic incident management agencies to implement strategies to reduce incident duration, leading to reduced congestion, secondary incidents, and the associated human and economic losses.
Resumo:
Background Overweight and obesity has become a serious public health problem in many parts of the world. Studies suggest that making small changes in daily activity levels such as “breaking-up” sedentary time (i.e., standing) may help mitigate the health risks of sedentary behavior. The aim of the present study was to examine time spent in standing (determined by count threshold), lying, and sitting postures (determined by inclinometer function) via the ActiGraph GT3X among sedentary adults with differing weight status based on body mass index (BMI) categories. Methods Participants included 22 sedentary adults (14 men, 8 women; mean age 26.5 ± 4.1 years). All subjects completed the self-report International Physical Activity Questionnaire to determine time spent sitting over the previous 7 days. Participants were included if they spent seven or more hours sitting per day. Postures were determined with the ActiGraph GT3X inclinometer function. Participants were instructed to wear the accelerometer for 7 consecutive days (24 h a day). BMI was categorized as: 18.5 to <25 kg/m2 as normal, 25 to <30 kg/m2 as overweight, and ≥30 kg/m2 as obese. Results Participants in the normal weight (n = 10) and overweight (n = 6) groups spent significantly more time standing (after adjustment for moderate-to-vigorous intensity physical activity and wear-time) (6.7 h and 7.3 h respectively) and less time sitting (7.1 h and 6.9 h respectively) than those in obese (n = 6) categories (5.5 h and 8.0 h respectively) after adjustment for wear-time (p < 0.001). There were no significant differences in standing and sitting time between normal weight and overweight groups (p = 0.051 and p = 0.670 respectively). Differences were not significant among groups for lying time (p = 0.55). Conclusion This study described postural allocations standing, lying, and sitting among normal weight, overweight, and obese sedentary adults. The results provide additional evidence for the use of increasing standing time in obesity prevention strategies.
Resumo:
Background and Objectives In Australia, the risk of transfusion-transmitted malaria is managed through the identification of ‘at-risk’ donors, antibody screening enzyme-linked immunoassay (EIA) and, if reactive, exclusion from fresh blood component manufacture. Donor management depends on the duration of exposure in malarious regions (>6 months: ‘Resident’, <6 months: ‘Visitor’) or a history of malaria diagnosis. We analysed antibody testing and demographic data to investigate antibody persistence dynamics. To assess the yield from retesting 3 years after an initial EIA reactive result, we estimated the proportion of donors who would become non-reactive over this period. Materials and Methods Test results and demographic data from donors who were malaria EIA reactive were analysed. Time since possible exposure was estimated and antibody survival modelled. Results Among seroreverters, the time since last possible exposure was significantly shorter in ‘Visitors’ than in ‘Residents’. The antibody survival modelling predicted 20% of previously EIA reactive ‘Visitors’, but only 2% of ‘Residents’ would become non-reactive within 3 years of their first reactive EIA. Conclusion Antibody persistence in donors correlates with exposure category, with semi-immune ‘Residents’ maintaining detectable antibodies significantly longer than non-immune ‘Visitors’.
Resumo:
For humans and robots to communicate using natural language it is necessary for the robots to develop concepts and associated terms that correspond to the human use of words. Time and space are foundational concepts in human language, and to develop a set of words that correspond to human notions of time and space, it is necessary to take into account the way that they are used in natural human conversations, where terms and phrases such as `soon', `in a while', or `near' are often used. We present language learning robots called Lingodroids that can learn and use simple terms for time and space. In previous work, the Lingodroids were able to learn terms for space. In this work we extend their abilities by adding temporal variables which allow them to learn terms for time. The robots build their own maps of the world and interact socially to form a shared lexicon for location and duration terms. The robots successfully use the shared lexicons to communicate places and times to meet again.
Resumo:
Objective To evaluate the time course of the recovery of transverse strain in the Achilles and patellar tendon following a bout of resistance exercise. Methods Seventeen healthy adults underwent sonographic examination of the right patellar (n=9) and Achilles (n=8) tendons immediately prior to and following 90 repetitions of weight-bearing quadriceps and gastrocnemius-resistance exercise performed against an effective resistance of 175% and 250% body weight, respectively. Sagittal tendon thickness was determined 20 mm from the enthesis and transverse strain, as defined by the stretch ratio, was repeatedly monitored over a 24 h recovery period. Results Resistance exercise resulted in an immediate decrease in Achilles (t7=10.6, p<0.01) and patellar (t8=8.9, p<0.01) tendon thickness, resulting in an average transverse stretch ratio of 0.86±0.04 and 0.82±0.05, which was not significantly different between tendons. The magnitude of the immediate transverse strain response, however, was reduced with advancing age (r=0.63, p<0.01). Recovery in transverse strain was prolonged compared with the duration of loading and exponential in nature. The average primary recovery time was not significantly different between the Achilles (6.5±3.2 h) and patellar (7.1±3.2 h) tendons. Body weight accounted for 62% and 64% of the variation in recovery time, respectively. Conclusions Despite structural and biochemical differences between the Achilles and patellar tendon, the mechanisms underlying transverse creep recovery in vivo appear similar and are highly time dependent. These novel findings have important implications concerning the time required for the mechanical recovery of high-stress tendons following an acute bout of exercise.
Resumo:
Meal-Induced Thermogenesis (MIT) research findings are highly inconsistent, in part, due to the variety of durations and protocols used to measure MIT. We aimed to determine: 1) the proportion of a 6 h MIT response completed at 3, 4 and 5 h; 2) the associations between the shorter durations and the 6 h measure; 3) whether shorter durations improved the reproducibility of the measurement. MIT was measured in response to a 2410 KJ mixed composition meal in ten individuals (5 male, 5 female) on two occasions. Energy expenditure was measured continuously for 6 h post-meal using indirect calorimetry and MIT was calculated as the increase in energy expenditure above the pre-meal RMR. On average, 76%, 89%, and 96% of the 6 h MIT response was completed within 3, 4 and 5 h respectively, and the MIT at each of these time points was strongly correlated to the 6 h MIT (range for correlations, r = 0.990 to 0.998; p < 0.01). The between-day CV for the 6 h measurement was 33%, but was significantly lower after 3 h of measurement (CV = 26%, p = 0.02). Despite variability in the total MIT between days, the proportion of the MIT that was complete at 3, 4 and 5 h was reproducible (mean CV: 5%). While 6 h is typically required to measure the complete MIT response, 3 h measures provide sufficient information about the magnitude of the MIT response and may be applicable for measuring individuals on repeated occasions.
Resumo:
The use of mobile phones while driving is more prevalent among young drivers—a less experienced cohort with elevated crash risk. The objective of this study was to examine and better understand the reaction times of young drivers to a traffic event originating in their peripheral vision whilst engaged in a mobile phone conversation. The CARRS-Q Advanced Driving Simulator was used to test a sample of young drivers on various simulated driving tasks, including an event that originated within the driver’s peripheral vision, whereby a pedestrian enters a zebra crossing from a sidewalk. Thirty-two licensed drivers drove the simulator in three phone conditions: baseline (no phone conversation), hands-free and handheld. In addition to driving the simulator each participant completed questionnaires related to driver demographics, driving history, usage of mobile phones while driving, and general mobile phone usage history. The participants were 21 to 26 years old and split evenly by gender. Drivers’ reaction times to a pedestrian in the zebra crossing were modelled using a parametric accelerated failure time (AFT) duration model with a Weibull distribution. Also tested where two different model specifications to account for the structured heterogeneity arising from the repeated measures experimental design. The Weibull AFT model with gamma heterogeneity was found to be the best fitting model and identified four significant variables influencing the reaction times, including phone condition, driver’s age, license type (Provisional license holder or not), and self-reported frequency of usage of handheld phones while driving. The reaction times of drivers were more than 40% longer in the distracted condition compared to baseline (not distracted). Moreover, the impairment of reaction times due to mobile phone conversations was almost double for provisional compared to open license holders. A reduction in the ability to detect traffic events in the periphery whilst distracted presents a significant and measurable safety concern that will undoubtedly persist unless mitigated.
Resumo:
Using our porcine model of deep dermal partial thickness burn injury, various durations (10min, 20min, 30min or 1h) and delays (immediate, 10min, 1h, 3h) of 15 degrees C running water first aid were applied to burns and compared to untreated controls. The subdermal temperatures were monitored during the treatment and wounds observed weekly for 6 weeks, for re-epithelialisation, wound surface area and cosmetic appearance. At 6 weeks after the burn, tissue biopsies were taken of the scar for histological analysis. Results showed that immediate application of cold running water for 20min duration is associated with an improvement in re-epithelialisation over the first 2 weeks post-burn and decreased scar tissue at 6 weeks. First aid application of cold water for as little as 10min duration or up to 1h delay still provides benefit.
Resumo:
The approach adopted for investigating the relationship between rainfall characteristics and pollutant wash-off process is commonly based on the use of parameters which represent the entire rainfall event. This does not permit the investigation of the influence of rainfall characteristics on different sectors of the wash-off process such as first flush where there is a high pollutant wash-off load at the initial stage of the runoff event. This research study analysed the influence of rainfall characteristics on the pollutant wash-off process using two sets of innovative parameters by partitioning wash-off and rainfall characteristics. It was found that the initial 10% of the wash-off process is closely linked to runoff volume related rainfall parameters including rainfall depth and rainfall duration while the remaining part of the wash-off process is primarily influenced by kinetic energy related rainfall parameters, namely, rainfall intensity. These outcomes prove that different sectors of the wash-off process are influenced by different segments of a rainfall event.
Resumo:
Objective To investigate how and when changes in workplace sitting time occurred following a workplace intervention to inform evaluation of intervention success. Method The 4-week Stand Up Comcare study (June–September 2011) aimed to reduce workplace sitting time via regularly interrupting and replacing sitting time throughout the day. Activity monitor (activPAL3) workplace data from control (n=22) and intervention participants (n=21) were analysed. Differences in the number and usual duration of sitting bouts were used to evaluate how change occurred. To examine when change occurred, intervention effects were compared by hour since starting work and hour of the workday. Change in workplace activity (sitting, standing, stepping) was examined to further inform alignment with intervention messages. Individual variability was examined in how and when the change occurred. Results Overall, behavioural changes aligned with intervention aims. All intervention participants reduced total workplace sitting time, though there was wide individual variability observed (range −29 to −262 min per 8 h workday). On average, intervention participants reduced number of sitting bouts (−4.6 bouts (95% CI −10.1 to 1.0), p=0.106) and usual sitting bout duration (−5.6 min (95% CI −9.8 to −1.4, p=0.011)) relative to controls. Sitting time reductions were observed across the workday, though intervention effects varied by hour of the day (p=0.015). The intervention group successfully adopted the Stand Up and Sit Less intervention messages across the day. Conclusion These analyses confirmed that this workplace intervention successfully modified sitting behaviour as intended (ie, fewer and shorter sitting bouts, with changes occurring throughout the day).
Resumo:
Accurate prediction of incident duration is not only important information of Traffic Incident Management System, but also an ffective input for travel time prediction. In this paper, the hazard based prediction odels are developed for both incident clearance time and arrival time. The data are obtained from the Queensland Department of Transport and Main Roads’ STREAMS Incident Management System (SIMS) for one year ending in November 2010. The best fitting distributions are drawn for both clearance and arrival time for 3 types of incident: crash, stationary vehicle, and hazard. The results show that Gamma, Log-logistic, and Weibull are the best fit for crash, stationary vehicle, and hazard incident, respectively. The obvious impact factors are given for crash clearance time and arrival time. The quantitative influences for crash and hazard incident are presented for both clearance and arrival. The model accuracy is analyzed at the end.
Resumo:
SVP-like MADS domain transcription factors have been shown to regulate flowering time and both inflorescence and flower development in annual plants, while having effects on growth cessation and terminal bud formation in perennial species. Previously, four SVP genes were described in woody perennial vine kiwifruit (Actinidia spp.), with possible distinct roles in bud dormancy and flowering. Kiwifruit SVP3 transcript was confined to vegetative tissues and acted as a repressor of flowering as it was able to rescue the Arabidopsis svp41 mutant. To characterize kiwifruit SVP3 further, ectopic expression in kiwifruit species was performed. Ectopic expression of SVP3 in A. deliciosa did not affect general plant growth or the duration of endodormancy. Ectopic expression of SVP3 in A. eriantha also resulted in plants with normal vegetative growth, bud break, and flowering time. However, significantly prolonged and abnormal flower, fruit, and seed development were observed, arising from SVP3 interactions with kiwifruit floral homeotic MADS-domain proteins. Petal pigmentation was reduced as a result of SVP3-mediated interference with transcription of the kiwifruit flower tissue-specific R2R3 MYB regulator, MYB110a, and the gene encoding the key anthocyanin biosynthetic step, F3GT1. Constitutive expression of SVP3 had a similar impact on reproductive development in transgenic tobacco. The flowering time was not affected in day-neutral and photoperiod-responsive Nicotiana tabacum cultivars, but anthesis and seed germination were significantly delayed. The accumulation of anthocyanin in petals was reduced and the same underlying mechanism of R2R3 MYB NtAN2 transcript reduction was demonstrated.
Resumo:
Braking is a crucial driving task with a direct relationship with crash risk, as both excess and inadequate braking can lead to collisions. The objective of this study was to compare the braking profile of young drivers distracted by mobile phone conversations to non-distracted braking. In particular, the braking behaviour of drivers in response to a pedestrian entering a zebra crossing was examined using the CARRS-Q Advanced Driving Simulator. Thirty-two licensed drivers drove the simulator in three phone conditions: baseline (no phone conversation), hands-free, and handheld. In addition to driving the simulator, each participant completed questionnaires related to driver demographics, driving history, usage of mobile phones while driving, and general mobile phone usage history. The drivers were 18–26 years old and split evenly by gender. A linear mixed model analysis of braking profiles along the roadway before the pedestrian crossing revealed comparatively increased decelerations among distracted drivers, particularly during the initial 20 kph of deceleration. Drivers’ initial 20 kph deceleration time was modelled using a parametric accelerated failure time (AFT) hazard-based duration model with a Weibull distribution with clustered heterogeneity to account for the repeated measures experiment design. Factors found to significantly influence the braking task included vehicle dynamics variables like initial speed and maximum deceleration, phone condition, and driver-specific variables such as licence type, crash involvement history, and self-reported experience of using a mobile phone whilst driving. Distracted drivers on average appear to reduce the speed of their vehicle faster and more abruptly than non-distracted drivers, exhibiting excess braking comparatively and revealing perhaps risk compensation. The braking appears to be more aggressive for distracted drivers with provisional licenses compared to drivers with open licenses. Abrupt or excessive braking by distracted drivers might pose significant safety concerns to following vehicles in a traffic stream.