168 resultados para TSP module
Resumo:
Mechanical harmonic transmissions are relatively new kind of drives having several unusual features. For example, they can provide reduction ratio up to 500:1 in one stage, have very small teeth module compared to conventional drives and very large number of teeth (up to 1000) on a flexible gear. If for conventional drives manufacturing methods are well-developed, fabrication of large size harmonic drives presents a challenge. For example, how to fabricate a thin shell of 1.7m in diameter and wall thickness of 30mm having high precision external teeth at one end and internal splines at the other end? It is so flexible that conventional fabrication methods become unsuitable. In this paper special fabrication methods are discussed that can be used for manufacturing of large size harmonic drive components. They include electro-slag welding and refining, the use of special expandable devices to locate and hold a flexible gear, welding peripheral parts of disks with wear resistant materials with subsequent machining and others. These fabrication methods proved to be effective and harmonic drives built with the use of these innovative technologies have been installed on heavy metallurgical equipment and successfully tested.
Resumo:
The research presented in this thesis addresses inherent problems in signaturebased intrusion detection systems (IDSs) operating in heterogeneous environments. The research proposes a solution to address the difficulties associated with multistep attack scenario specification and detection for such environments. The research has focused on two distinct problems: the representation of events derived from heterogeneous sources and multi-step attack specification and detection. The first part of the research investigates the application of an event abstraction model to event logs collected from a heterogeneous environment. The event abstraction model comprises a hierarchy of events derived from different log sources such as system audit data, application logs, captured network traffic, and intrusion detection system alerts. Unlike existing event abstraction models where low-level information may be discarded during the abstraction process, the event abstraction model presented in this work preserves all low-level information as well as providing high-level information in the form of abstract events. The event abstraction model presented in this work was designed independently of any particular IDS and thus may be used by any IDS, intrusion forensic tools, or monitoring tools. The second part of the research investigates the use of unification for multi-step attack scenario specification and detection. Multi-step attack scenarios are hard to specify and detect as they often involve the correlation of events from multiple sources which may be affected by time uncertainty. The unification algorithm provides a simple and straightforward scenario matching mechanism by using variable instantiation where variables represent events as defined in the event abstraction model. The third part of the research looks into the solution to address time uncertainty. Clock synchronisation is crucial for detecting multi-step attack scenarios which involve logs from multiple hosts. Issues involving time uncertainty have been largely neglected by intrusion detection research. The system presented in this research introduces two techniques for addressing time uncertainty issues: clock skew compensation and clock drift modelling using linear regression. An off-line IDS prototype for detecting multi-step attacks has been implemented. The prototype comprises two modules: implementation of the abstract event system architecture (AESA) and of the scenario detection module. The scenario detection module implements our signature language developed based on the Python programming language syntax and the unification-based scenario detection engine. The prototype has been evaluated using a publicly available dataset of real attack traffic and event logs and a synthetic dataset. The distinct features of the public dataset are the fact that it contains multi-step attacks which involve multiple hosts with clock skew and clock drift. These features allow us to demonstrate the application and the advantages of the contributions of this research. All instances of multi-step attacks in the dataset have been correctly identified even though there exists a significant clock skew and drift in the dataset. Future work identified by this research would be to develop a refined unification algorithm suitable for processing streams of events to enable an on-line detection. In terms of time uncertainty, identified future work would be to develop mechanisms which allows automatic clock skew and clock drift identification and correction. The immediate application of the research presented in this thesis is the framework of an off-line IDS which processes events from heterogeneous sources using abstraction and which can detect multi-step attack scenarios which may involve time uncertainty.
Resumo:
This study investigated the psychological impact of HIV infection through assessment of posttraumatic stress disorder in response to HIV infection. Sixty-one HIV-positive homosexual/bisexual men were assessed for posttraumatic stress disorder in response to HIV infection (PTSD-HIV) using a modified PTSD module of the DIS-III-R. Thirty percent met criteria for a syndrome of posttraumatic stress disorder in response to HIV diagnosis (PTSD-HIV). In over one-third of the PTSD cases, the disorder had an onset greater than 6 months after initial HIV infection diagnosis. PTSD-HIV was associated with other psychiatric diagnoses, particularly the development of first episodes of major depression after HIV infection diagnosis. PTSD-HIV was significantly associated with a pre-HIV history of PTSD from other causes, and other pre-HIV psychiatric disorders and neuroticism scores, indicating a similarity with findings in studies of PTSD from other causes. The findings from this preliminary study suggest that a PTSD response to HIV diagnosis has clinical validity and requires further investigation in this population and other medically ill groups. The results support the inclusion of the diagnosis of life-threatening illness as a traumatic incident that may lead to a posttraumatic stress disorder, which is consistent with the DSM-IV criteria.
Resumo:
Australia has no nationally accepted building products life cycle inventory (LCI) database for use in building Ecologically Sustainable Development (ESD) assessment (BEA) tools. More information about the sustainability of the supply chain is limited by industry’s lack of real capacity to deliver objective information on process and product environmental impact. Recognition of these deficits emerged during compilation of a National LCI database to inform LCADesign, a prototype 3 dimensional object oriented computer aided design (3-D CAD) commercial building design tool. Development of this Australian LCI represents 24 staff years of effort here since 1995. Further development of LCADesign extensions is proposed as being essential to support key applications demanded from a more holistic theoretical framework calling for modules of new building and construction industry tools. A proposed tool, conceptually called LCADetails, is to serve the building product industries own needs as well as that of commercial building design amongst other industries’ prospective needs. In this paper, a proposition is examined that the existing national LCI database should be further expanded to serve Australian building product industries’ needs as well as to provide details for its client-base from a web based portal containing a module of practical supply and procurement applications. Along with improved supply chain assessment services, this proposed portal is envisaged to facilitate industry environmental life cycle improvement assessment and support decision-making to provide accredited data for operational reporting capabilities, load-based reasoning as well as BEA applications. This paper provides an overview of developments to date, including a novel 3-D CAD information and communications technology (ICT) platform for more holistic integration of existing tools for true cost assessment. Further conceptualisation of future prospects, based on a new holistic life cycle assessment framework LCADevelop, considering stakeholder relationships and their need for a range of complementary tools leveraging automated function off such ICT platforms to inform dimensionally defined operations for such as automotive, civil, transport and industrial applications are also explored.
Resumo:
This paper proposes a novel relative entropy rate (RER) based approach for multiple HMM (MHMM) approximation of a class of discrete-time uncertain processes. Under different uncertainty assumptions, the model design problem is posed either as a min-max optimisation problem or stochastic minimisation problem on the RER between joint laws describing the state and output processes (rather than the more usual RER between output processes). A suitable filter is proposed for which performance results are established which bound conditional mean estimation performance and show that estimation performance improves as the RER is reduced. These filter consistency and convergence bounds are the first results characterising multiple HMM approximation performance and suggest that joint RER concepts provide a useful model selection criteria. The proposed model design process and MHMM filter are demonstrated on an important image processing dim-target detection problem.
Resumo:
Improving the performance of a incident detection system was essential to minimize the effect of incidents. A new method of incident detection was brought forward in this paper based on an in-car terminal which consisted of GPS module, GSM module and control module as well as some optional parts such as airbag sensors, mobile phone positioning system (MPPS) module, etc. When a driver or vehicle discovered the freeway incident and initiated an alarm report the incident location information located by GPS, MPPS or both would be automatically send to a transport management center (TMC), then the TMC would confirm the accident with a closed-circuit television (CCTV) or other approaches. In this method, detection rate (DR), time to detect (TTD) and false alarm rate (FAR) were more important performance targets. Finally, some feasible means such as management mode, education mode and suitable accident confirming approaches had been put forward to improve these targets.
Resumo:
Machine downtime, whether planned or unplanned, is intuitively costly to manufacturing organisations, but is often very difficult to quantify. The available literature showed that costing processes are rarely undertaken within manufacturing organisations. Where cost analyses have been undertaken, they generally have only valued a small proportion of the affected costs, leading to an overly conservative estimate. This thesis aimed to develop a cost of downtime model, with particular emphasis on the application of the model to Australia Post’s Flat Mail Optical Character Reader (FMOCR). The costing analysis determined a cost of downtime of $5,700,000 per annum, or an average cost of $138 per operational hour. The second section of this work focused on the use of the cost of downtime to objectively determine areas of opportunity for cost reduction on the FMOCR. This was the first time within Post that maintenance costs were considered along side of downtime for determining machine performance. Because of this, the results of the analysis revealed areas which have historically not been targeted for cost reduction. Further exploratory work was undertaken on the Flats Lift Module (FLM) and Auto Induction Station (AIS) Deceleration Belts through the comparison of the results against two additional FMOCR analysis programs. This research has demonstrated the development of a methodical and quantifiable cost of downtime for the FMOCR. This has been the first time that Post has endeavoured to examine the cost of downtime. It is also one of the very few methodologies for valuing downtime costs that has been proposed in literature. The work undertaken has also demonstrated how the cost of downtime can be incorporated into machine performance analysis with specific application to identifying high costs modules. The outcome of this report has both been the methodology for costing downtime, as well as a list of areas for cost reduction. In doing so, this thesis has outlined the two key deliverables presented at the outset of the research.
Resumo:
The effects of particulate matter on environment and public health have been widely studied in recent years. A number of studies in the medical field have tried to identify the specific effect on human health of particulate exposure, but agreement amongst these studies on the relative importance of the particles’ size and its origin with respect to health effects is still lacking. Nevertheless, air quality standards are moving, as the epidemiological attention, towards greater focus on the smaller particles. Current air quality standards only regulate the mass of particulate matter less than 10 μm in aerodynamic diameter (PM10) and less than 2.5 μm (PM2.5). The most reliable method used in measuring Total Suspended Particles (TSP), PM10, PM2.5 and PM1 is the gravimetric method since it directly measures PM concentration, guaranteeing an effective traceability to international standards. This technique however, neglects the possibility to correlate short term intra-day variations of atmospheric parameters that can influence ambient particle concentration and size distribution (emission strengths of particle sources, temperature, relative humidity, wind direction and speed and mixing height) as well as human activity patterns that may also vary over time periods considerably shorter than 24 hours. A continuous method to measure the number size distribution and total number concentration in the range 0.014 – 20 μm is the tandem system constituted by a Scanning Mobility Particle Sizer (SMPS) and an Aerodynamic Particle Sizer (APS). In this paper, an uncertainty budget model of the measurement of airborne particle number, surface area and mass size distributions is proposed and applied for several typical aerosol size distributions. The estimation of such an uncertainty budget presents several difficulties due to i) the complexity of the measurement chain, ii) the fact that SMPS and APS can properly guarantee the traceability to the International System of Measurements only in terms of number concentration. In fact, the surface area and mass concentration must be estimated on the basis of separately determined average density and particle morphology. Keywords: SMPS-APS tandem system, gravimetric reference method, uncertainty budget, ultrafine particles.
Resumo:
Public transportation is an environment with great potential for applying location-based services through mobile devices. The BusTracker study is looking at how real-time passenger information systems can provide a core platform to improve commuters’ experiences. These systems rely on mobile computing and GPS technology to provide accurate information on transport vehicle locations. BusTracker builds on this mobile computing platform and geospatial information. The pilot study is running on the open source BugLabs computing platform, using a GPS module for accurate location information.
Resumo:
The effects of sintering on several properties of FTO and ITO substates used in DSC have been investigated. FTO & ITO substrates were prepared with a range of sizes and aspect ratios - emulated laboratory style test cells through to prototype modules. Time and temperature of the sintering profiles were varied and sheet resistance and flatness measured. Electrical properties of the substrates were then further characterized by electrochemical impedance spectroscopy, and module sized devices were assembled and thickness variations over the device area were determined and related to performance.
Resumo:
In this paper you will be introduced to a number of principles which can be used to inform good teaching practice and rigorous curriculum design. Principles relate to: * Application of a common sequence of events for how learners learn; * Accommodating different learning styles; * Adopting a purposeful approach to teaching and learning; * Using assessment as a central driving force in the curriculum and as an organising structure leading to coherence of teaching and learning approach; and * The increasing emphasis that is being placed on the development of generic graduate competencies over and above discipline content knowledge. The principles are particularly significant in relation to adult learning. The paper will use three specific applications as illustrations to help you to learn how these principles can be applied. The illustrations are taken from a second year subject in supercomputing that uses scientific case studies. The subject has been developed (with support from Silicon Graphics Inc. and Intel) to be taught entirely via the Internet.
Resumo:
Purpose: The component modules in the standard BEAMnrc distribution may appear to be insufficient to model micro-multileaf collimators that have tri-faceted leaf ends and complex leaf profiles. This note indicates, however, that accurate Monte Carlo simulations of radiotherapy beams defined by a complex collimation device can be completed using BEAMnrc's standard VARMLC component module.---------- Methods: That this simple collimator model can produce spatially and dosimetrically accurate micro-collimated fields is illustrated using comparisons with ion chamber and film measurements of the dose deposited by square and irregular fields incident on planar, homogeneous water phantoms.---------- Results: Monte Carlo dose calculations for on- and off-axis fields are shown to produce good agreement with experimental values, even upon close examination of the penumbrae.--------- Conclusions: The use of a VARMLC model of the micro-multileaf collimator, along with a commissioned model of the associated linear accelerator, is therefore recommended as an alternative to the development or use of in-house or third-party component modules for simulating stereotactic radiotherapy and radiosurgery treatments. Simulation parameters for the VARMLC model are provided which should allow other researchers to adapt and use this model to study clinical stereotactic radiotherapy treatments.
Resumo:
The challenge of persistent navigation and mapping is to develop an autonomous robot system that can simultaneously localize, map and navigate over the lifetime of the robot with little or no human intervention. Most solutions to the simultaneous localization and mapping (SLAM) problem aim to produce highly accurate maps of areas that are assumed to be static. In contrast, solutions for persistent navigation and mapping must produce reliable goal-directed navigation outcomes in an environment that is assumed to be in constant flux. We investigate the persistent navigation and mapping problem in the context of an autonomous robot that performs mock deliveries in a working office environment over a two-week period. The solution was based on the biologically inspired visual SLAM system, RatSLAM. RatSLAM performed SLAM continuously while interacting with global and local navigation systems, and a task selection module that selected between exploration, delivery, and recharging modes. The robot performed 1,143 delivery tasks to 11 different locations with only one delivery failure (from which it recovered), traveled a total distance of more than 40 km over 37 hours of active operation, and recharged autonomously a total of 23 times.
Resumo:
The Simultaneous Localisation And Mapping (SLAM) problem is one of the major challenges in mobile robotics. Probabilistic techniques using high-end range finding devices are well established in the field, but recent work has investigated vision-only approaches. We present an alternative approach to the leading existing techniques, which extracts approximate rotational and translation velocity information from a vehicle-mounted consumer camera, without tracking landmarks. When coupled with an existing SLAM system, the vision module is able to map a 45 metre long indoor loop and a 1.6 km long outdoor road loop, without any parameter or system adjustment between tests. The work serves as a promising pilot study into ground-based vision-only SLAM, with minimal geometric interpretation of the environment.