174 resultados para Survival analysis (Biometry) Mathematical models
Resumo:
"This collection of papers offers a broad synopsis of state-of-the-art mathematical methods used in modeling the interaction between tumors and the immune system. These papers were presented at the four-day workshop on Mathematical Models of Tumor-Immune System Dynamics held in Sydney, Australia from January 7th to January 10th, 2013. The workshop brought together applied mathematicians, biologists, and clinicians actively working in the field of cancer immunology to share their current research and to increase awareness of the innovative mathematical tools that are applicable to the growing field of cancer immunology. Recent progress in cancer immunology and advances in immunotherapy suggest that the immune system plays a fundamental role in host defense against tumors and could be utilized to prevent or cure cancer. Although theoretical and experimental studies of tumor-immune system dynamics have a long history, there are still many unanswered questions about the mechanisms that govern the interaction between the immune system and a growing tumor. The multidimensional nature of these complex interactions requires a cross-disciplinary approach to capture more realistic dynamics of the essential biology. The papers presented in this volume explore these issues and the results will be of interest to graduate students and researchers in a variety of fields within mathematical and biological sciences."--Publisher website
Resumo:
Designed for undergraduate and postgraduate students, academic researchers and industrial practitioners, this book provides comprehensive case studies on numerical computing of industrial processes and step-by-step procedures for conducting industrial computing. It assumes minimal knowledge in numerical computing and computer programming, making it easy to read, understand and follow. Topics discussed include fundamentals of industrial computing, finite difference methods, the Wavelet-Collocation Method, the Wavelet-Galerkin Method, High Resolution Methods, and comparative studies of various methods. These are discussed using examples of carefully selected models from real processes of industrial significance. The step-by-step procedures in all these case studies can be easily applied to other industrial processes without a need for major changes and thus provide readers with useful frameworks for the applications of engineering computing in fundamental research problems and practical development scenarios.
Resumo:
This project investigated the calcium distributions of the skin, and the growth patterns of skin substitutes grown in the laboratory, using mathematical models. The research found that the calcium distribution in the upper layer of the skin is controlled by three different mechanisms, not one as previously thought. The research also suggests that tight junctions, which are adhesions between neighbouring skin cells, cannot be solely responsible for the differences in the growth patterns of skin substitutes and normal skin.
Resumo:
Collective cell spreading is frequently observed in development, tissue repair and disease progression. Mathematical modelling used in conjunction with experimental investigation can provide key insights into the mechanisms driving the spread of cell populations. In this study, we investigated how experimental and modelling frameworks can be used to identify several key features underlying collective cell spreading. In particular, we were able to independently quantify the roles of cell motility and cell proliferation in a spreading cell population, and investigate how these roles are influenced by factors such as the initial cell density, type of cell population and the assay geometry.
Resumo:
This project investigated the calcium distributions of the skin, and the growth patterns of skin substitutes grown in the laboratory, using mathematical models. The research found that the calcium distribution in the upper layer of the skin is controlled by three different mechanisms, not one as previously thought. The research also suggests that tight junctions, which are adhesions between neighbouring skin cells, cannot be solely responsible for the differences in the growth patterns of skin substitutes and normal skin.
Resumo:
Objective: To examine the effects of personal and community characteristics, specifically race and rurality, on lengths of state psychiatric hospital and community stays using maximum likelihood survival analysis with a special emphasis on change over a ten year period of time. Data Sources: We used the administrative data of the Virginia Department of Mental Health, Mental Retardation, and Substance Abuse Services (DMHMRSAS) from 1982-1991 and the Area Resources File (ARF). Given these two sources, we constructed a history file for each individual who entered the state psychiatric system over the ten year period. Histories included demographic, treatment, and community characteristics. Study Design: We used a longitudinal, population-based design with maximum likelihood estimation of survival models. We presented a random effects model with unobserved heterogeneity that was independent of observed covariates. The key dependent variables were lengths of inpatient stay and subsequent length of community stay. Explanatory variables measured personal, diagnostic, and community characteristics, as well as controls for calendar time. Data Collection: This study used secondary, administrative, and health planning data. Principal Findings: African-American clients leave the community more quickly than whites. After controlling for other characteristics, however, race does not affect hospital length of stay. Rurality does not affect length of community stays once other personal and community characteristics are controlled for. However, people from rural areas have longer hospital stays even after controlling for personal and community characteristics. The effects of time are significantly smaller than expected. Diagnostic composition effects and a decrease in the rate of first inpatient admissions explain part of this reduced impact of time. We also find strong evidence for the existence of unobserved heterogeneity in both types of stays and adjust for this in our final models. Conclusions: Our results show that information on client characteristics available from inpatient stay records is useful in predicting not only the length of inpatient stay but also the length of the subsequent community stay. This information can be used to target increased discharge planning for those at risk of more rapid readmission to inpatient care. Correlation across observed and unobserved factors affecting length of stay has significant effects on the measurement of relationships between individual factors and lengths of stay. Thus, it is important to control for both observed and unobserved factors in estimation.
Resumo:
Modern Engineering Asset Management (EAM) requires the accurate assessment of current and the prediction of future asset health condition. Suitable mathematical models that are capable of predicting Time-to-Failure (TTF) and the probability of failure in future time are essential. In traditional reliability models, the lifetime of assets is estimated using failure time data. However, in most real-life situations and industry applications, the lifetime of assets is influenced by different risk factors, which are called covariates. The fundamental notion in reliability theory is the failure time of a system and its covariates. These covariates change stochastically and may influence and/or indicate the failure time. Research shows that many statistical models have been developed to estimate the hazard of assets or individuals with covariates. An extensive amount of literature on hazard models with covariates (also termed covariate models), including theory and practical applications, has emerged. This paper is a state-of-the-art review of the existing literature on these covariate models in both the reliability and biomedical fields. One of the major purposes of this expository paper is to synthesise these models from both industrial reliability and biomedical fields and then contextually group them into non-parametric and semi-parametric models. Comments on their merits and limitations are also presented. Another main purpose of this paper is to comprehensively review and summarise the current research on the development of the covariate models so as to facilitate the application of more covariate modelling techniques into prognostics and asset health management.
Resumo:
This research paper aims to develop a method to explore the travel behaviour differences between disadvantaged and non-disadvantaged populations. It also aims to develop a modelling approach or a framework to integrate disadvantage analysis into transportation planning models (TPMs). The methodology employed identifies significantly disadvantaged groups through a cluster analysis and the paper presents a disadvantage-integrated TPM. This model could be useful in determining areas with concentrated disadvantaged population and also developing and formulating relevant disadvantage sensitive policies. (a) For the covering entry of this conference, please see ITRD abstract no. E214666.
Resumo:
This study considered the problem of predicting survival, based on three alternative models: a single Weibull, a mixture of Weibulls and a cure model. Instead of the common procedure of choosing a single “best” model, where “best” is defined in terms of goodness of fit to the data, a Bayesian model averaging (BMA) approach was adopted to account for model uncertainty. This was illustrated using a case study in which the aim was the description of lymphoma cancer survival with covariates given by phenotypes and gene expression. The results of this study indicate that if the sample size is sufficiently large, one of the three models emerge as having highest probability given the data, as indicated by the goodness of fit measure; the Bayesian information criterion (BIC). However, when the sample size was reduced, no single model was revealed as “best”, suggesting that a BMA approach would be appropriate. Although a BMA approach can compromise on goodness of fit to the data (when compared to the true model), it can provide robust predictions and facilitate more detailed investigation of the relationships between gene expression and patient survival. Keywords: Bayesian modelling; Bayesian model averaging; Cure model; Markov Chain Monte Carlo; Mixture model; Survival analysis; Weibull distribution