105 resultados para Surface electron properties


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a path planning technique for ground vehicles that accounts for the dynamics of the vehicle, the topography of the terrain and the wheel/ground interaction properties such as friction. The first two properties can be estimated using well known sensors and techniques, but the third is not often estimated even though it has a significant effect on the motion of a high-speed vehicle. We introduce a technique which allows the estimation of wheel slip from which frictional parameters can be inferred. We present simulation results which show the importance of modelling topography and ground properties and experimental results which show how ground properties can be estimated along a 350m outdoor traverse.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Several studies of the surface effect on bending properties of a nanowire (NW) have been conducted. However, these analyses are mainly based on theoretical predictions, and there is seldom integration study in combination between theoretical predictions and simulation results. Thus, based on the molecular dynamics (MD) simulation and different modified beam theories, a comprehensive theoretical and numerical study for bending properties of nanowires considering surface/intrinsic stress effects and axial extension effect is conducted in this work. The discussion begins from the Euler-Bernoulli beam theory and Timoshenko beam theory augmented with surface effect. It is found that when the NW possesses a relatively small cross-sectional size, these two theories cannot accurately interpret the true surface effect. The incorporation of axial extension effect into Euler-Bernoulli beam theory provides a nonlinear solution that agrees with the nonlinear-elastic experimental and MD results. However, it is still found inaccurate when the NW cross-sectional size is relatively small. Such inaccuracy is also observed for the Euler-Bernoulli beam theory augmented with both contributions from surface effect and axial extension effect. A comprehensive model for completely considering influences from surface stress, intrinsic stress, and axial extension is then proposed, which leads to good agreement with MD simulation results. It is thus concluded that, for NWs with a relatively small cross-sectional size, a simple consideration of surface stress effect is inappropriate, and a comprehensive consideration of the intrinsic stress effect is required.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Based on the molecular dynamics (MD) method, the single-crystalline copper nanowire with different surface defects is investigated through tension simulation. For comparison, the MD tension simulations of perfect nanowire are firstly carried out under different temperatures, strain rates, and sizes. It has concluded that the surface-volume ratio significantly affects the mechanical properties of nanowire. The surface defects on nanowires are then systematically studied in considering different defect orientation and distribution. It is found that the Young’s modulus is insensitive of surface defects. However, the yield strength and yield point show a significant decrease due to the different defects. Different defects are observed to serve as a dislocation source.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Large-scale molecular dynamics simulations are performed to characterize the effects of pre-existing surface defects on the vibrational properties of Ag nanowires. It is found that the first order natural frequency of the nanowire appears insensitive to different surface defects, indicating a defect insensitivity property of the nanowire’s Young’s modulus. In the meanwhile, an increase of the quality (Q)-factor is observed due to the presence of defects. Particular, a beat phenomenon is observed for the nanowire with the presence of a surface edge defect, which is driven by a single actuation. It is concluded that different surface defects could act as an effective mean to tune the vibrational properties of nanowires. This study sheds lights on the better understanding of nanowire’s mechanical performance when surface defects are presented, which would benefit the development of nanowire-based devices.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Palygorskite has a fibrous like morphology with a distinctive layered appearance. The simplified formula of palygorskite (Mg5Si8O20(OH)2(OH2)4 nH2O) indicates that two different types of water are present. The dehydration and rehydration of palygorskite have been studied using thermogravimetry and H2O-tem- perature programmed desorption. X-ray diffractograms, NH3 adsorption profiles, and NH3 desorption profiles were obtained for thermally treated palygorskite as a function of temperature. The results proved water molecules were mainly derived from Si–OH units. In addition, five kinds of acid sites were found for palygorskite. The number of acid sites of external surfaces was larger than that of the internal sur- faces. Bonding on the internal surface acid sites was stronger than the bonding of the external surfaces. Rehydration restored the folded structure of palygorskite when thermal treatment temperature was lower than 300 oC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Presented is the material and gas sensing properties of graphene-like nano-sheets deposited on 36° YX lithium tantalate (LiTaO3) surface acoustic wave (SAW) transducers. The graphene-like nano-sheets were characterized via scanning electron microscopy (SEM), atomic force microscopy(AFM)and X-ray photoelectron spectroscopy (XPS). The graphenelike nano-sheet/SAW sensors were exposed to different concentrations of hydrogen (H2) gas in a synthetic air at room temperature. The developed sensors exhibit good sensitivity towards low concentrations of H2 in ambient conditions, as well as excellent dynamic performance towards H2 at room temperature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

XRD (X-ray diffraction), XRF (X-ray fluorescence), TG (thermogravimetry), FT-IES (Fourier transform infrared emission spectroscopy), FESEM (field emission scanning electron microscope), TEM (transmission electron microscope) and nitrogen–adsorption–desorption analysis were used to characterize the composition and thermal evolution of the structure of natural goethite. The in situ FT-IES demonstrated the start temperature (250 °C) of the transformation of natural goethite to hematite and the thermodynamic stability of protohematite between 250 and 600 °C. The heated products showed a topotactic relationship to the original mineral based on SEM analysis. Finally, the nitrogen–adsorption–desorption isotherm provided the variation of surface area and pore size distribution as a function of temperature. The surface area displayed a remarkable increase up to 350 °C, and then decreased above this temperature. The significant increase in surface area was attributed to the formation of regularly arranged slit-shaped micropores running parallel to elongated direction of hematite microcrystal. The main pore size varied from 0.99 nm to 3.5 nm when heating temperature increases from 300 to 400 °C. The hematite derived from heating goethite possesses high surface area and favors the possible application of hematite as an adsorbent as well as catalyst carrier.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Materials used in the engineering always contain imperfections or defects which significantly affect their performances. Based on the large-scale molecular dynamics simulation and the Euler–Bernoulli beam theory, the influence from different pre-existing surface defects on the bending properties of Ag nanowires (NWs) is studied in this paper. It is found that the nonlinear-elastic deformation, as well as the flexural rigidity of the NW is insensitive to different surface defects for the studied defects in this paper. On the contrary, an evident decrease of the yield strength is observed due to the existence of defects. In-depth inspection of the deformation process reveals that, at the onset of plastic deformation, dislocation embryos initiate from the locations of surface defects, and the plastic deformation is dominated by the nucleation and propagation of partial dislocations under the considered temperature. Particularly, the generation of stair-rod partial dislocations and Lomer–Cottrell lock are normally observed for both perfect and defected NWs. The generation of these structures has thwarted attempts of the NW to an early yielding, which leads to the phenomenon that more defects does not necessarily mean a lower critical force.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Boron nitride nanotubes were functionalized by microperoxidase-11 in aqueous media, showing improved catalytic performance due to a strong electron coupling 10 between the active centre of microperoxidase-11 and boron nitride nanotubes. One main application challenge of enzymes as biocatalysts is molecular aggregation in the aqueous solution. This issue is addressed by immobilization of enzymes on solid supports which 15 can enhance enzyme stability and facilitate separation, and recovery for reuse while maintaining catalytic activity and selectivity. The protein-nanoparticle interactions play a key role in bio-nanotechnology and emerge with the development of nanoparticle-protein “corona”. Bio-molecular coronas provide a 20 unique biological identity of nanosized materials.1, 2 As a structural analogue to carbon nanotubes (CNTs), Boron nitride nanotubes have boron and nitrogen atoms distributed equally in hexagonal rings and exhibit excellent mechanical strength, unique physical properties, and chemical stability at high-temperatures. 25 The chemical inertness of BN materials suits to work in hazardous environments, making them an optimal candidate in practical applications in biological and medical field.3, 4

Relevância:

40.00% 40.00%

Publicador:

Resumo:

α- and β-Phase MoO3 are synthesized using an electrodeposition method on fluorine-doped tin oxide (FTO) glass substrates from sodium-molybdate (Na2MoO4) solutions. We show that it is possible to obtain both α- and β-MoO3 by manipulating the cyclic voltammetry (CV) parameters during electrodeposition. Raman spectroscopy, X-ray diffraction, and scanning electron microscopy indicate that the applied potential range and sweep rate are strongly influential on the phase obtained and the surface morphology of the electrodeposited thin films. Gasochromic measurements were carried out on the annealed samples by exposing them to H2 gas. It was revealed that α-MoO3 thin films provided better response to H2 interaction than β-MoO3 films did. Additionally, porous films provided significantly larger responses than smooth films.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Graphene has been increasingly used as nano sized fillers to create a broad range of nanocomposites with exceptional properties. The interfaces between fillers and matrix play a critical role in dictating the overall performance of a composite. However, the load transfer mechanism along graphene-polymer interface has not been well understood. In this study, we conducted molecular dynamics simulations to investigate the influence of surface functionalization and layer length on the interfacial load transfer in graphene polymer nanocomposites. The simulation results show that oxygen-functionalized graphene leads to larger interfacial shear force than hydrogen-functionalized and pristine ones during pull-out process. The increase of oxygen coverage and layer length enhances interfacial shear force. Further increase of oxygen coverage to about 7% leads to a saturated interfacial shear force. A model was also established to demonstrate that the mechanism of interfacial load transfer consists of two contributing parts, including the formation of new surface and relative sliding along the interface. These results are believed to be useful in development of new graphene-based nanocomposites with better interfacial properties.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Palladium is sputtered on multi-walled carbon nanotube forests to form carbon-metal core-shell nanowire arrays. These hybrid nanostructures exhibited resistive responses when exposed to hydrogen with an excellent baseline recovery at room temperature. The magnitude of the response is shown to be tuneable by an applied voltage. Unlike the charge-transfer mechanism commonly attributed to Pd nanoparticle-decorated carbon nanotubes, this demonstrates that the hydrogen response mechanism of the multi-walled carbon nanotube-Pd core-shell nanostructure is due to the increase in electron scattering induced by physisorption of hydrogen. These hybrid core-shell nanostructures are promising for gas detection in hydrogen storage applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Carbon nanorods and graphene-like nanosheets are catalytically synthesized in a hot filament chemical vapor deposition system with and without plasma enhancement, with gold used as a catalyst. The morphological and structural properties of the carbon nanorods and nanosheets are investigated by field-emission scanning electron microscopy, transmission electron microscopy and micro-Raman spectroscopy. It is found that carbon nanorods are formed when a CH4 + H2 + N2 plasma is present while carbon nanosheets are formed in a methane environment without a plasma. The formation of carbon nanorods and carbon nanosheets are analyzed. The results suggest that the formation of carbon nanorods is primarily a precipitation process while the formation of carbon nanosheets is a complex process involving surface-catalysis, surface diffusion and precipitation influenced by the Gibbs–Thomson effect. The electron field emission properties of the carbon nanorods and graphene-like nanosheets are measured under high-vacuum; it is found that the carbon nanosheets have a lower field emission turn-on than the carbon nanorods. These results are important to improve the understanding of formation mechanisms of carbon nanomaterials and contribute to eventual applications of these structures in nanodevices.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nanocomposite dielectrics hold a promising future for the next generation of insulation materials because of their excellent physical, chemical, and dielectric properties. In the presented study, we investigate the use of plasma processing technology to further enhance the dielectric performance of epoxy resin/SiO2 nanocomposite materials. The SiO2 nanoparticles are treated with atmospheric-pressure non-equilibrium plasma prior to being added into the epoxy resin host. Fourier transform infrared spectroscopy (FTIR) results reveal the effects of the plasma process on the surface functional groups of the treated nanoparticles. Scanning electron microscopy (SEM) results show that the plasma treatment appreciably improves the dispersion uniformity of nanoparticles in the host polymer. With respect to insulation performance, the epoxy/plasma-treated SiO2 specimen shows a 29% longer endurance time than the epoxy/untreated SiO2 nanocomposite under electrical aging. The Weibull plots of the dielectric breakdown field intensity suggest that the breakdown strength of the nanocomposite with the plasma pre-treatment on the nanoparticles is improved by 23.3%.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electron field emission (EFE) properties of nitrogenated carbon nanotips (NCNTPs) were studied under high-vacuum conditions. The NCNTPs were prepared in a plasma-assisted hot filament chemical vapor deposition system using CH4 and N2 as the carbon and nitrogen sources, respectively. The work functions of NCNTPs were measured using x-ray photoelectron spectroscopy. The morphological and structural properties of NCNTPs were studied by field emission scanning electron microscopy, micro-Raman spectroscopy, and x-ray photoelectron spectroscopy. The field enhancement factors of NCNTPs were calculated using relevant EFE models based on the Fowler-Nordheim approximation. Analytical characterization and modeling results were used to establish the relations between the EFE properties of NCNTPs and their morphology, structure, and composition. It is shown that the EFE properties of NCNTPs can be enhanced by the reduction of oxygen termination on the surface as well as by increasing the ratio of the NCNTP height to the radius of curvature at its top. These results also suggest that a significant amount of electrons is emitted from other surface areas besides the NCNTP tops, contrary to the common belief. The outcomes of this study advance our knowledge on the electron emission properties of carbonnanomaterials and contribute to the development of the next-generation of advanced applications in the fields of micro- and opto-electronics.