151 resultados para Steady state solutions


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Exhaust emissions from thirteen compressed natural gas (CNG) and nine ultralow sulphur diesel in-service transport buses were monitored on a chassis dynamometer. Measurements were carried out at idle and at three steady engine loads of 25%, 50% and 100% of maximum power at a fixed speed of 60 kmph. Emission factors were estimated for particle mass and number, carbon dioxide and oxides of nitrogen for two types of CNG buses (Scania and MAN, compatible with Euro 2 and 3 emission standards, respectively) and two types of diesel buses (Volvo Pre-Euro/Euro1 and Mercedez OC500 Euro3). All emission factors increased with load. The median particle mass emission factor for the CNG buses was less than 1% of that from the diesel buses at all loads. However, the particle number emission factors did not show a statistically significant difference between buses operating on the two types of fuel. In this paper, for the very first time, particle number emission factors are presented at four steady state engine loads for CNG buses. Median values ranged from the order of 1012 particles min-1 at idle to 1015 particles km-1 at full power. Most of the particles observed in the CNG emissions were in the nanoparticle size range and likely to be composed of volatile organic compounds The CO2 emission factors were about 20% to 30% greater for the diesel buses over the CNG buses, while the oxides of nitrogen emission factors did not show any difference due to the large variation between buses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many industrial processes and systems can be modelled mathematically by a set of Partial Differential Equations (PDEs). Finding a solution to such a PDF model is essential for system design, simulation, and process control purpose. However, major difficulties appear when solving PDEs with singularity. Traditional numerical methods, such as finite difference, finite element, and polynomial based orthogonal collocation, not only have limitations to fully capture the process dynamics but also demand enormous computation power due to the large number of elements or mesh points for accommodation of sharp variations. To tackle this challenging problem, wavelet based approaches and high resolution methods have been recently developed with successful applications to a fixedbed adsorption column model. Our investigation has shown that recent advances in wavelet based approaches and high resolution methods have the potential to be adopted for solving more complicated dynamic system models. This chapter will highlight the successful applications of these new methods in solving complex models of simulated-moving-bed (SMB) chromatographic processes. A SMB process is a distributed parameter system and can be mathematically described by a set of partial/ordinary differential equations and algebraic equations. These equations are highly coupled; experience wave propagations with steep front, and require significant numerical effort to solve. To demonstrate the numerical computing power of the wavelet based approaches and high resolution methods, a single column chromatographic process modelled by a Transport-Dispersive-Equilibrium linear model is investigated first. Numerical solutions from the upwind-1 finite difference, wavelet-collocation, and high resolution methods are evaluated by quantitative comparisons with the analytical solution for a range of Peclet numbers. After that, the advantages of the wavelet based approaches and high resolution methods are further demonstrated through applications to a dynamic SMB model for an enantiomers separation process. This research has revealed that for a PDE system with a low Peclet number, all existing numerical methods work well, but the upwind finite difference method consumes the most time for the same degree of accuracy of the numerical solution. The high resolution method provides an accurate numerical solution for a PDE system with a medium Peclet number. The wavelet collocation method is capable of catching up steep changes in the solution, and thus can be used for solving PDE models with high singularity. For the complex SMB system models under consideration, both the wavelet based approaches and high resolution methods are good candidates in terms of computation demand and prediction accuracy on the steep front. The high resolution methods have shown better stability in achieving steady state in the specific case studied in this Chapter.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

IEC Technical Committee 57 (TC57) published a series of standards and technical reports for “Communication networks and systems for power utility automation” as the IEC 61850 series. Sampled value (SV) process buses allow for the removal of potentially lethal voltages and damaging currents inside substation control rooms and marshalling kiosks, reduce the amount of cabling required in substations, and facilitate the adoption of non-conventional instrument transformers. IEC 61850-9-2 provides an inter-operable solution to support multi-vendor process bus solutions. A time synchronisation system is required for a SV process bus, however the details are not defined in IEC 61850-9-2. IEEE Std 1588-2008, Precision Time Protocol version 2 (PTPv2), provides the greatest accuracy of network based time transfer systems, with timing errors of less than 100 ns achievable. PTPv2 is proposed by the IEC Smart Grid Strategy Group to synchronise IEC 61850 based substation automation systems. IEC 61850-9-2, PTPv2 and Ethernet are three complementary protocols that together define the future of sampled value digital process connections in substations. The suitability of PTPv2 for use with SV is evaluated, with preliminary results indicating that steady state performance is acceptable (jitter < 300 ns), and that extremely stable grandmaster oscillators are required to ensure SV timing requirements are met when recovering from loss of external synchronisation (such as GPS).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Three recent papers published in Chemical Engineering Journal studied the solution of a model of diffusion and nonlinear reaction using three different methods. Two of these studies obtained series solutions using specialized mathematical methods, known as the Adomian decomposition method and the homotopy analysis method. Subsequently it was shown that the solution of the same particular model could be written in terms of a transcendental function called Gauss’ hypergeometric function. These three previous approaches focused on one particular reactive transport model. This particular model ignored advective transport and considered one specific reaction term only. Here we generalize these previous approaches and develop an exact analytical solution for a general class of steady state reactive transport models that incorporate (i) combined advective and diffusive transport, and (ii) any sufficiently differentiable reaction term R(C). The new solution is a convergent Maclaurin series. The Maclaurin series solution can be derived without any specialized mathematical methods nor does it necessarily involve the computation of any transcendental function. Applying the Maclaurin series solution to certain case studies shows that the previously published solutions are particular cases of the more general solution outlined here. We also demonstrate the accuracy of the Maclaurin series solution by comparing with numerical solutions for particular cases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An analytical solution for steady-state oxygen transport in soils including 2 sink terms, viz roots and microbes with the corresponding vertical distribution scaling lengths forming a ratio p, showed p governed the critical air-filled porosity, θc, needed by most plants. For low temperature and p, θc was <0.1 but at higher temperatures and p = 1, θc was >0.15 m3/m3. When root length density at the surface was 104 m/m3 and p > 3, θc was 0.25 m3/m3, more than half the pore space. Few combinations of soil and climate regularly meet this condition. However, for sandy soils and seasonally warm, arid regions, the theory is consistent with observation, in that plants may have some deep roots. Critical θc values are used to formulate theoretical solutions in a forward mode, so different levels of oxygen uptake by roots may be compared to microbial activity. The proportion of respiration by plant roots increases rapidly with p up to p ≈2.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The unsteady natural convection boundary layer adjacent to an instantaneously heated inclined plate is investigated using an improved scaling analysis and direct numerical simulations. The development of the unsteady natural convection boundary layer following instantaneous heating may be classified into three distinct stages including a start-up stage, a transitional stage and a steady state stage, which can be clearly identified in the analytical and numerical results. Major scaling relations of the velocity and thicknesses and the flow development time of the natural convection boundary layer are obtained using triple-layer integral solutions and verified by direct numerical simulations over a wide range of flow parameters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We develop a new analytical solution for a reactive transport model that describes the steady-state distribution of oxygen subject to diffusive transport and nonlinear uptake in a sphere. This model was originally reported by Lin (Journal of Theoretical Biology, 1976 v60, pp449–457) to represent the distribution of oxygen inside a cell and has since been studied extensively by both the numerical analysis and formal analysis communities. Here we extend these previous studies by deriving an analytical solution to a generalized reaction-diffusion equation that encompasses Lin’s model as a particular case. We evaluate the solution for the parameter combinations presented by Lin and show that the new solutions are identical to a grid-independent numerical approximation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Problems involving the solution of advection-diffusion-reaction equations on domains and subdomains whose growth affects and is affected by these equations, commonly arise in developmental biology. Here, a mathematical framework for these situations, together with methods for obtaining spatio-temporal solutions and steady states of models built from this framework, is presented. The framework and methods are applied to a recently published model of epidermal skin substitutes. Despite the use of Eulerian schemes, excellent agreement is obtained between the numerical spatio-temporal, numerical steady state, and analytical solutions of the model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Geoscientists are confronted with the challenge of assessing nonlinear phenomena that result from multiphysics coupling across multiple scales from the quantum level to the scale of the earth and from femtoseconds to the 4.5 Ga of history of our planet. We neglect in this review electromagnetic modelling of the processes in the Earth’s core, and focus on four types of couplings that underpin fundamental instabilities in the Earth. These are thermal (T), hydraulic (H), mechanical (M) and chemical (C) processes which are driven and controlled by the transfer of heat to the Earth’s surface. Instabilities appear as faults, folds, compaction bands, shear/fault zones, plate boundaries and convective patterns. Convective patterns emerge from buoyancy overcoming viscous drag at a critical Rayleigh number. All other processes emerge from non-conservative thermodynamic forces with a critical critical dissipative source term, which can be characterised by the modified Gruntfest number Gr. These dissipative processes reach a quasi-steady state when, at maximum dissipation, THMC diffusion (Fourier, Darcy, Biot, Fick) balance the source term. The emerging steady state dissipative patterns are defined by the respective diffusion length scales. These length scales provide a fundamental thermodynamic yardstick for measuring instabilities in the Earth. The implementation of a fully coupled THMC multiscale theoretical framework into an applied workflow is still in its early stages. This is largely owing to the four fundamentally different lengths of the THMC diffusion yardsticks spanning micro-metre to tens of kilometres compounded by the additional necessity to consider microstructure information in the formulation of enriched continua for THMC feedback simulations (i.e., micro-structure enriched continuum formulation). Another challenge is to consider the important factor time which implies that the geomaterial often is very far away from initial yield and flowing on a time scale that cannot be accessed in the laboratory. This leads to the requirement of adopting a thermodynamic framework in conjunction with flow theories of plasticity. This framework allows, unlike consistency plasticity, the description of both solid mechanical and fluid dynamic instabilities. In the applications we show the similarity of THMC feedback patterns across scales such as brittle and ductile folds and faults. A particular interesting case is discussed in detail, where out of the fluid dynamic solution, ductile compaction bands appear which are akin and can be confused with their brittle siblings. The main difference is that they require the factor time and also a much lower driving forces to emerge. These low stress solutions cannot be obtained on short laboratory time scales and they are therefore much more likely to appear in nature than in the laboratory. We finish with a multiscale description of a seminal structure in the Swiss Alps, the Glarus thrust, which puzzled geologists for more than 100 years. Along the Glarus thrust, a km-scale package of rocks (nappe) has been pushed 40 km over its footwall as a solid rock body. The thrust itself is a m-wide ductile shear zone, while in turn the centre of the thrust shows a mm-cm wide central slip zone experiencing periodic extreme deformation akin to a stick-slip event. The m-wide creeping zone is consistent with the THM feedback length scale of solid mechanics, while the ultralocalised central slip zones is most likely a fluid dynamic instability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The emission factors of a bus fleet consisting of approximately three hundreds diesel powered buses were measured in a tunnel study under well controlled conditions during a two-day monitoring campaign in Brisbane. The number concentration of particles in the size range 0.017-0.7 m was monitored simultaneously by two Scanning Mobility Particle Sizers located at the tunnel’s entrance and exit. The mean value of the number emission factors was found to be (2.44±1.41)×1014 particles km-1. The results are in good agreement with the emission factors determined from steady-state dynamometer testing of 12 buses from the same Brisbane City bus fleet, thus indicating that when carefully designed, both approaches, the dynamometer and on-road studies, can provide comparable results, applicable for the assessment of the effect of traffic emissions on airborne particle pollution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Simulation is widely used as a tool for analyzing business processes but is mostly focused on examining abstract steady-state situations. Such analyses are helpful for the initial design of a business process but are less suitable for operational decision making and continuous improvement. Here we describe a simulation system for operational decision support in the context of workflow management. To do this we exploit not only the workflow’s design, but also use logged data describing the system’s observed historic behavior, and incorporate information extracted about the current state of the workflow. Making use of actual data capturing the current state and historic information allows our simulations to accurately predict potential near-future behaviors for different scenarios. The approach is supported by a practical toolset which combines and extends the workflow management system YAWL and the process mining framework ProM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study focuses on an alluvial plain situated within a large meander of the Logan River at Josephville near Beaudesert which supports a factory that processes gelatine. The plant draws water from on site bores, as well as the Logan River, for its production processes and produces approximately 1.5 ML per day (Douglas Partners, 2004) of waste water containing high levels of dissolved ions. At present a series of treatment ponds are used to aerate the waste water reducing the level of organic matter; the water is then used to irrigate grazing land around the site. Within the study the hydrogeology is investigated, a conceptual groundwater model is produced and a numerical groundwater flow model is developed from this. On the site are several bores that access groundwater, plus a network of monitoring bores. Assessment of drilling logs shows the area is formed from a mixture of poorly sorted Quaternary alluvial sediments with a laterally continuous aquifer comprised of coarse sands and fine gravels that is in contact with the river. This aquifer occurs at a depth of between 11 and 15 metres and is overlain by a heterogeneous mixture of silts, sands and clays. The study investigates the degree of interaction between the river and the groundwater within the fluvially derived sediments for reasons of both environmental monitoring and sustainability of the potential local groundwater resource. A conceptual hydrogeological model of the site proposes two hydrostratigraphic units, a basal aquifer of coarse-grained materials overlain by a thick semi-confining unit of finer materials. From this, a two-layer groundwater flow model and hydraulic conductivity distribution was developed based on bore monitoring and rainfall data using MODFLOW (McDonald and Harbaugh, 1988) and PEST (Doherty, 2004) based on GMS 6.5 software (EMSI, 2008). A second model was also considered with the alluvium represented as a single hydrogeological unit. Both models were calibrated to steady state conditions and sensitivity analyses of the parameters has demonstrated that both models are very stable for changes in the range of ± 10% for all parameters and still reasonably stable for changes up to ± 20% with RMS errors in the model always less that 10%. The preferred two-layer model was found to give the more realistic representation of the site, where water level variations and the numerical modeling showed that the basal layer of coarse sands and fine gravels is hydraulically connected to the river and the upper layer comprising a poorly sorted mixture of silt-rich clays and sands of very low permeability limits infiltration from the surface to the lower layer. The paucity of historical data has limited the numerical modelling to a steady state one based on groundwater levels during a drought period and forecasts for varying hydrological conditions (e.g. short term as well as prolonged dry and wet conditions) cannot reasonably be made from such a model. If future modelling is to be undertaken it is necessary to establish a regular program of groundwater monitoring and maintain a long term database of water levels to enable a transient model to be developed at a later stage. This will require a valid monitoring network to be designed with additional bores required for adequate coverage of the hydrogeological conditions at the Josephville site. Further investigations would also be enhanced by undertaking pump testing to investigate hydrogeological properties in the aquifer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This is an experimental study into the permeability and compressibility properties of bagasse pulp pads. Three experimental rigs were custom-built for this project. The experimental work is complemented by modelling work. Both the steady-state and dynamic behaviour of pulp pads are evaluated in the experimental and modelling components of this project. Bagasse, the fibrous residue that remains after sugar is extracted from sugarcane, is normally burnt in Australia to generate steam and electricity for the sugar factory. A study into bagasse pulp was motivated by the possibility of making highly value-added pulp products from bagasse for the financial benefit of sugarcane millers and growers. The bagasse pulp and paper industry is a multibillion dollar industry (1). Bagasse pulp could replace eucalypt pulp which is more widely used in the local production of paper products. An opportunity exists for replacing the large quantity of mainly generic paper products imported to Australia. This includes 949,000 tonnes of generic photocopier papers (2). The use of bagasse pulp for paper manufacture is the main application area of interest for this study. Bagasse contains a large quantity of short parenchyma cells called ‘pith’. Around 30% of the shortest fibres are removed from bagasse prior to pulping. Despite the ‘depithing’ operations in conventional bagasse pulp mills, a large amount of pith remains in the pulp. Amongst Australian paper producers there is a perception that the high quantity of short fibres in bagasse pulp leads to poor filtration behaviour at the wet-end of a paper machine. Bagasse pulp’s poor filtration behaviour reduces paper production rates and consequently revenue when compared to paper production using locally made eucalypt pulp. Pulp filtration can be characterised by two interacting factors; permeability and compressibility. Surprisingly, there has previously been very little rigorous investigation into neither bagasse pulp permeability nor compressibility. Only freeness testing of bagasse pulp has been published in the open literature. As a result, this study has focussed on a detailed investigation of the filtration properties of bagasse pulp pads. As part of this investigation, this study investigated three options for improving the permeability and compressibility properties of Australian bagasse pulp pads. Two options for further pre-treating depithed bagasse prior to pulping were considered. Firstly, bagasse was fractionated based on size. Two bagasse fractions were produced, ‘coarse’ and ‘medium’ bagasse fractions. Secondly, bagasse was collected after being processed on two types of juice extraction technology, i.e. from a sugar mill and from a sugar diffuser. Finally one method of post-treating the bagasse pulp was investigated. The effects of chemical additives, which are known to improve freeness, were also assessed for their effect on pulp pad permeability and compressibility. Pre-treated Australian bagasse pulp samples were compared with several benchmark pulp samples. A sample of commonly used kraft Eucalyptus globulus pulp was obtained. A sample of depithed Argentinean bagasse, which is used for commercial paper production, was also obtained. A sample of Australian bagasse which was depithed as per typical factory operations was also produced for benchmarking purposes. The steady-state pulp pad permeability and compressibility parameters were determined experimentally using two purpose-built experimental rigs. In reality, steady-state conditions do not exist on a paper machine. The permeability changes as the sheet compresses over time. Hence, a dynamic model was developed which uses the experimentally determined steady-state permeability and compressibility parameters as inputs. The filtration model was developed with a view to designing pulp processing equipment that is suitable specifically for bagasse pulp. The predicted results of the dynamic model were compared to experimental data. The effectiveness of a polymeric and microparticle chemical additives for improving the retention of short fibres and increasing the drainage rate of a bagasse pulp slurry was determined in a third purpose-built rig; a modified Dynamic Drainage Jar (DDJ). These chemical additives were then used in the making of a pulp pad, and their effect on the steady-state and dynamic permeability and compressibility of bagasse pulp pads was determined. The most important finding from this investigation was that Australian bagasse pulp was produced with higher permeability than eucalypt pulp, despite a higher overall content of short fibres. It is thought this research outcome could enable Australian paper producers to switch from eucalypt pulp to bagasse pulp without sacrificing paper machine productivity. It is thought that two factors contributed to the high permeability of the bagasse pulp pad. Firstly, thicker cell walls of the bagasse pulp fibres resulted in high fibre stiffness. Secondly, the bagasse pulp had a large proportion of fibres longer than 1.3 mm. These attributes helped to reinforce the pulp pad matrix. The steady-state permeability and compressibility parameters for the eucalypt pulp were consistent with those found by previous workers. It was also found that Australian pulp derived from the ‘coarse’ bagasse fraction had higher steady-state permeability than the ‘medium’ fraction. However, there was no difference between bagasse pulp originating from a diffuser or a mill. The bagasse pre-treatment options investigated in this study were not found to affect the steady-state compressibility parameters of a pulp pad. The dynamic filtration model was found to give predictions that were in good agreement with experimental data for pads made from samples of pretreated bagasse pulp, provided at least some pith was removed prior to pulping. Applying vacuum to a pulp slurry in the modified DDJ dramatically reduced the drainage time. At any level of vacuum, bagasse pulp benefitted from chemical additives as quantified by reduced drainage time and increased retention of short fibres. Using the modified DDJ, it was observed that under specific conditions, a benchmark depithed bagasse pulp drained more rapidly than the ‘coarse’ bagasse pulp. In steady-state permeability and compressibility experiments, the addition of chemical additives improved the pad permeability and compressibility of a benchmark bagasse pulp with a high quantity of short fibres. Importantly, this effect was not observed for the ‘coarse’ bagasse pulp. However, dynamic filtration experiments showed that there was also a small observable improvement in filtration for the ‘medium’ bagasse pulp. The mechanism of bagasse pulp pad consolidation appears to be by fibre realignment. Chemical additives assist to lubricate the consolidation process. This study was complemented by pulp physical and chemical property testing and a microscopy study. In addition to its high pulp pad permeability, ‘coarse’ bagasse pulp often (but not always) had superior physical properties than a benchmark depithed bagasse pulp.