342 resultados para Speculative attacks


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distributed Denial of Services DDoS, attacks has become one of the biggest threats for resources over Internet. Purpose of these attacks is to make servers deny from providing services to legitimate users. These attacks are also used for occupying media bandwidth. Currently intrusion detection systems can just detect the attacks but cannot prevent / track the location of intruders. Some schemes also prevent the attacks by simply discarding attack packets, which saves victim from attack, but still network bandwidth is wasted. In our opinion, DDoS requires a distributed solution to save wastage of resources. The paper, presents a system that helps us not only in detecting such attacks but also helps in tracing and blocking (to save the bandwidth as well) the multiple intruders using Intelligent Software Agents. The system gives dynamic response and can be integrated with the existing network defense systems without disturbing existing Internet model. We have implemented an agent based networking monitoring system in this regard.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To date, most applications of algebraic analysis and attacks on stream ciphers are on those based on lin- ear feedback shift registers (LFSRs). In this paper, we extend algebraic analysis to non-LFSR based stream ciphers. Specifically, we perform an algebraic analysis on the RC4 family of stream ciphers, an example of stream ciphers based on dynamic tables, and inves- tigate its implications to potential algebraic attacks on the cipher. This is, to our knowledge, the first pa- per that evaluates the security of RC4 against alge- braic attacks through providing a full set of equations that describe the complex word manipulations in the system. For an arbitrary word size, we derive alge- braic representations for the three main operations used in RC4, namely state extraction, word addition and state permutation. Equations relating the inter- nal states and keystream of RC4 are then obtained from each component of the cipher based on these al- gebraic representations, and analysed in terms of their contributions to the security of RC4 against algebraic attacks. Interestingly, it is shown that each of the three main operations contained in the components has its own unique algebraic properties, and when their respective equations are combined, the resulting system becomes infeasible to solve. This results in a high level of security being achieved by RC4 against algebraic attacks. On the other hand, the removal of an operation from the cipher could compromise this security. Experiments on reduced versions of RC4 have been performed, which confirms the validity of our algebraic analysis and the conclusion that the full RC4 stream cipher seems to be immune to algebraic attacks at present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stream ciphers are encryption algorithms used for ensuring the privacy of digital telecommunications. They have been widely used for encrypting military communications, satellite communications, pay TV encryption and for voice encryption of both fixed lined and wireless networks. The current multi year European project eSTREAM, which aims to select stream ciphers suitable for widespread adoptation, reflects the importance of this area of research. Stream ciphers consist of a keystream generator and an output function. Keystream generators produce a sequence that appears to be random, which is combined with the plaintext message using the output function. Most commonly, the output function is binary addition modulo two. Cryptanalysis of these ciphers focuses largely on analysis of the keystream generators and of relationships between the generator and the keystream it produces. Linear feedback shift registers are widely used components in building keystream generators, as the sequences they produce are well understood. Many types of attack have been proposed for breaking various LFSR based stream ciphers. A recent attack type is known as an algebraic attack. Algebraic attacks transform the problem of recovering the key into a problem of solving multivariate system of equations, which eventually recover the internal state bits or the key bits. This type of attack has been shown to be effective on a number of regularly clocked LFSR based stream ciphers. In this thesis, algebraic attacks are extended to a number of well known stream ciphers where at least one LFSR in the system is irregularly clocked. Applying algebriac attacks to these ciphers has only been discussed previously in the open literature for LILI-128. In this thesis, algebraic attacks are first applied to keystream generators using stop-and go clocking. Four ciphers belonging to this group are investigated: the Beth-Piper stop-and-go generator, the alternating step generator, the Gollmann cascade generator and the eSTREAM candidate: the Pomaranch cipher. It is shown that algebraic attacks are very effective on the first three of these ciphers. Although no effective algebraic attack was found for Pomaranch, the algebraic analysis lead to some interesting findings including weaknesses that may be exploited in future attacks. Algebraic attacks are then applied to keystream generators using (p; q) clocking. Two well known examples of such ciphers, the step1/step2 generator and the self decimated generator are investigated. Algebraic attacks are shown to be very powerful attack in recovering the internal state of these generators. A more complex clocking mechanism than either stop-and-go or the (p; q) clocking keystream generators is known as mutual clock control. In mutual clock control generators, the LFSRs control the clocking of each other. Four well known stream ciphers belonging to this group are investigated with respect to algebraic attacks: the Bilateral-stop-and-go generator, A5/1 stream cipher, Alpha 1 stream cipher, and the more recent eSTREAM proposal, the MICKEY stream ciphers. Some theoretical results with regards to the complexity of algebraic attacks on these ciphers are presented. The algebraic analysis of these ciphers showed that generally, it is hard to generate the system of equations required for an algebraic attack on these ciphers. As the algebraic attack could not be applied directly on these ciphers, a different approach was used, namely guessing some bits of the internal state, in order to reduce the degree of the equations. Finally, an algebraic attack on Alpha 1 that requires only 128 bits of keystream to recover the 128 internal state bits is presented. An essential process associated with stream cipher proposals is key initialization. Many recently proposed stream ciphers use an algorithm to initialize the large internal state with a smaller key and possibly publicly known initialization vectors. The effect of key initialization on the performance of algebraic attacks is also investigated in this thesis. The relationships between the two have not been investigated before in the open literature. The investigation is conducted on Trivium and Grain-128, two eSTREAM ciphers. It is shown that the key initialization process has an effect on the success of algebraic attacks, unlike other conventional attacks. In particular, the key initialization process allows an attacker to firstly generate a small number of equations of low degree and then perform an algebraic attack using multiple keystreams. The effect of the number of iterations performed during key initialization is investigated. It is shown that both the number of iterations and the maximum number of initialization vectors to be used with one key should be carefully chosen. Some experimental results on Trivium and Grain-128 are then presented. Finally, the security with respect to algebraic attacks of the well known LILI family of stream ciphers, including the unbroken LILI-II, is investigated. These are irregularly clock- controlled nonlinear filtered generators. While the structure is defined for the LILI family, a particular paramater choice defines a specific instance. Two well known such instances are LILI-128 and LILI-II. The security of these and other instances is investigated to identify which instances are vulnerable to algebraic attacks. The feasibility of recovering the key bits using algebraic attacks is then investigated for both LILI- 128 and LILI-II. Algebraic attacks which recover the internal state with less effort than exhaustive key search are possible for LILI-128 but not for LILI-II. Given the internal state at some point in time, the feasibility of recovering the key bits is also investigated, showing that the parameters used in the key initialization process, if poorly chosen, can lead to a key recovery using algebraic attacks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secret-sharing schemes describe methods to securely share a secret among a group of participants. A properly constructed secret-sharing scheme guarantees that the share belonging to one participant does not reveal anything about the shares of others or even the secret itself. Besides being used to distribute a secret, secret-sharing schemes have also been used in secure multi-party computations and redundant residue number systems for error correction codes. In this paper, we propose that the secret-sharing scheme be used as a primitive in a Network-based Intrusion Detection System (NIDS) to detect attacks in encrypted Networks. Encrypted networks such as Virtual Private Networks (VPNs) fully encrypt network traffic which can include both malicious and non-malicious traffic. Traditional NIDS cannot monitor such encrypted traffic. We therefore describe how our work uses a combination of Shamir's secret-sharing scheme and randomised network proxies to enable a traditional NIDS to function normally in a VPN environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gradual authentication is a principle proposed by Meadows as a way to tackle denial-of-service attacks on network protocols by gradually increasing the confidence in clients before the server commits resources. In this paper, we propose an efficient method that allows a defending server to authenticate its clients gradually with the help of some fast-to-verify measures. Our method integrates hash-based client puzzles along with a special class of digital signatures supporting fast verification. Our hash-based client puzzle provides finer granularity of difficulty and is proven secure in the puzzle difficulty model of Chen et al. (2009). We integrate this with the fast-verification digital signature scheme proposed by Bernstein (2000, 2008). These schemes can be up to 20 times faster for client authentication compared to RSA-based schemes. Our experimental results show that, in the Secure Sockets Layer (SSL) protocol, fast verification digital signatures can provide a 7% increase in connections per second compared to RSA signatures, and our integration of client puzzles with client authentication imposes no performance penalty on the server since puzzle verification is a part of signature verification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Dark Ages are generally held to be a time of technological and intellectual stagnation in western development. But that is not necessarily the case. Indeed, from a certain perspective, nothing could be further from the truth. In this paper we draw historical comparisons, focusing especially on the thirteenth and fourteenth centuries, between the technological and intellectual ruptures in Europe during the Dark Ages, and those of our current period. Our analysis is framed in part by Harold Innis’s2 notion of "knowledge monopolies". We give an overview of how these were affected by new media, new power struggles, and new intellectual debates that emerged in thirteenth and fourteenth century Europe. The historical salience of our focus may seem elusive. Our world has changed so much, and history seems to be an increasingly far-from-favoured method for understanding our own period and its future potentials. Yet our seemingly distant historical focus provides some surprising insights into the social dynamics that are at work today: the fracturing of established knowledge and power bases; the democratisation of certain "sacred" forms of communication and knowledge, and, conversely, the "sacrosanct" appropriation of certain vernacular forms; challenges and innovations in social and scientific method and thought; the emergence of social world-shattering media practices; struggles over control of vast networks of media and knowledge monopolies; and the enclosure of public discursive and social spaces for singular, manipulative purposes. The period between the eleventh and fourteenth centuries in Europe prefigured what we now call the Enlightenment, perhaps moreso than any other period before or after; it shaped what the Enlightenment was to become. We claim no knowledge of the future here. But in the "post-everything" society, where history is as much up for sale as it is for argument, we argue that our historical perspective provides a useful analogy for grasping the wider trends in the political economy of media, and for recognising clear and actual threats to the future of the public sphere in supposedly democratic societies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interoperable and loosely-coupled web services architecture, while beneficial, can be resource-intensive, and is thus susceptible to denial of service (DoS) attacks in which an attacker can use a relatively insignificant amount of resources to exhaust the computational resources of a web service. We investigate the effectiveness of defending web services from DoS attacks using client puzzles, a cryptographic countermeasure which provides a form of gradual authentication by requiring the client to solve some computationally difficult problems before access is granted. In particular, we describe a mechanism for integrating a hash-based puzzle into existing web services frameworks and analyze the effectiveness of the countermeasure using a variety of scenarios on a network testbed. Client puzzles are an effective defence against flooding attacks. They can also mitigate certain types of semantic-based attacks, although they may not be the optimal solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Dark Ages are generally held to be a time of technological and intellectual stagnation in western development. But that is not necessarily the case. Indeed, from a certain perspective, nothing could be further from the truth. In this paper we draw historical comparisons, focusing especially on the thirteenth and fourteenth centuries, between the technological and intellectual ruptures in Europe during the Dark Ages, and those of our current period. Our analysis is framed in part by Harold Innis’s2 notion of "knowledge monopolies". We give an overview of how these were affected by new media, new power struggles, and new intellectual debates that emerged in thirteenth and fourteenth century Europe. The historical salience of our focus may seem elusive. Our world has changed so much, and history seems to be an increasingly far-from-favoured method for understanding our own period and its future potentials. Yet our seemingly distant historical focus provides some surprising insights into the social dynamics that are at work today: the fracturing of established knowledge and power bases; the democratisation of certain "sacred" forms of communication and knowledge, and, conversely, the "sacrosanct" appropriation of certain vernacular forms; challenges and innovations in social and scientific method and thought; the emergence of social world-shattering media practices; struggles over control of vast networks of media and knowledge monopolies; and the enclosure of public discursive and social spaces for singular, manipulative purposes. The period between the eleventh and fourteenth centuries in Europe prefigured what we now call the Enlightenment, perhaps moreso than any other period before or after; it shaped what the Enlightenment was to become. We claim no knowledge of the future here. But in the "post-everything" society, where history is as much up for sale as it is for argument, we argue that our historical perspective provides a useful analogy for grasping the wider trends in the political economy of media, and for recognising clear and actual threats to the future of the public sphere in supposedly democratic societies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-party key exchange (2PKE) protocols have been rigorously analyzed under various models considering different adversarial actions. However, the analysis of group key exchange (GKE) protocols has not been as extensive as that of 2PKE protocols. Particularly, an important security attribute called key compromise impersonation (KCI) resilience has been completely ignored for the case of GKE protocols. Informally, a protocol is said to provide KCI resilience if the compromise of the long-term secret key of a protocol participant A does not allow the adversary to impersonate an honest participant B to A. In this paper, we argue that KCI resilience for GKE protocols is at least as important as it is for 2PKE protocols. Our first contribution is revised definitions of security for GKE protocols considering KCI attacks by both outsider and insider adversaries. We also give a new proof of security for an existing two-round GKE protocol under the revised security definitions assuming random oracles. We then show how to achieve insider KCIR in a generic way using a known compiler in the literature. As one may expect, this additional security assurance comes at the cost of an extra round of communication. Finally, we show that a few existing protocols are not secure against outsider KCI attacks. The attacks on these protocols illustrate the necessity of considering KCI resilience for GKE protocols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sfinks is a shift register based stream cipher designed for hardware implementation and submitted to the eSTREAM project. In this paper, we analyse the initialisation process of Sfinks. We demonstrate a slid property of the loaded state of the Sfinks cipher, where multiple key-IV pairs may produce phase shifted keystream sequences. The state update functions of both the initialisation process and keystream generation and also the pattern of the padding affect generation of the slid pairs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A complex attack is a sequence of temporally and spatially separated legal and illegal actions each of which can be detected by various IDS but as a whole they constitute a powerful attack. IDS fall short of detecting and modeling complex attacks therefore new methods are required. This paper presents a formal methodology for modeling and detection of complex attacks in three phases: (1) we extend basic attack tree (AT) approach to capture temporal dependencies between components and expiration of an attack, (2) using enhanced AT we build a tree automaton which accepts a sequence of actions from input message streams from various sources if there is a traversal of an AT from leaves to root, and (3) we show how to construct an enhanced parallel automaton that has each tree automaton as a subroutine. We use simulation to test our methods, and provide a case study of representing attacks in WLANs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computer worms represent a serious threat for modern communication infrastructures. These epidemics can cause great damage such as financial losses or interruption of critical services which support lives of citizens. These worms can spread with a speed which prevents instant human intervention. Therefore automatic detection and mitigation techniques need to be developed. However, if these techniques are not designed and intensively tested in realistic environments, they may cause even more harm as they heavily interfere with high volume communication flows. We present a simulation model which allows studies of worm spread and counter measures in large scale multi-AS topologies with millions of IP addresses.