23 resultados para Spectrophotometry


Relevância:

10.00% 10.00%

Publicador:

Resumo:

On delivery of nitric oxide (NO) to protein samples (e.g., cytochrome c'), for spectroscopic experiments it is important to avoid exposure to oxygen and to remove contaminants from the NO gas. We describe a number of techniques for steady-state UV/Vis spectrophotometry and pre-steady-state stopped-flow spectrophotometry analysis of cytochrome c'.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Detailed knowledge of the past history of an active volcano is crucial for the prediction of the timing, frequency and style of future eruptions, and for the identification of potentially at-risk areas. Subaerial volcanic stratigraphies are often incomplete, due to a lack of exposure, or burial and erosion from subsequent eruptions. However, many volcanic eruptions produce widely-dispersed explosive products that are frequently deposited as tephra layers in the sea. Cores of marine sediment therefore have the potential to provide more complete volcanic stratigraphies, at least for explosive eruptions. Nevertheless, problems such as bioturbation and dispersal by currents affect the preservation and subsequent detection of marine tephra deposits. Consequently, cryptotephras, in which tephra grains are not sufficiently concentrated to form layers that are visible to the naked eye, may be the only record of many explosive eruptions. Additionally, thin, reworked deposits of volcanic clasts transported by floods and landslides, or during pyroclastic density currents may be incorrectly interpreted as tephra fallout layers, leading to the construction of inaccurate records of volcanism. This work uses samples from the volcanic island of Montserrat as a case study to test different techniques for generating volcanic eruption records from marine sediment cores, with a particular relevance to cores sampled in relatively proximal settings (i.e. tens of kilometres from the volcanic source) where volcaniclastic material may form a pervasive component of the sedimentary sequence. Visible volcaniclastic deposits identified by sedimentological logging were used to test the effectiveness of potential alternative volcaniclastic-deposit detection techniques, including point counting of grain types (component analysis), glass or mineral chemistry, colour spectrophotometry, grain size measurements, XRF core scanning, magnetic susceptibility and X-radiography. This study demonstrates that a set of time-efficient, non-destructive and high-spatial-resolution analyses (e.g. XRF core-scanning and magnetic susceptibility) can be used effectively to detect potential cryptotephra horizons in marine sediment cores. Once these horizons have been sampled, microscope image analysis of volcaniclastic grains can be used successfully to discriminate between tephra fallout deposits and other volcaniclastic deposits, by using specific criteria related to clast morphology and sorting. Standard practice should be employed when analysing marine sediment cores to accurately identify both visible tephra and cryptotephra deposits, and to distinguish fallout deposits from other volcaniclastic deposits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biomolecules are chemical compounds found in living organisms which are the building blocks of life and perform important functions. Fluctuation from the normal concentration of these biomolecules in living system leads to several disorders. Thus the exact determination of them in human fluids is essential in the clinical point of view. High performance liquid chromatography, flow injection analysis, capillary electrophoresis, fluorimetry, spectrophotometry, electrochemical and chemiluminescence techniques were usually used for the determination of biologically important molecules. Among these techniques, electrochemical determination of biomolecules has several advantages over other methods viz., simplicity, selectivity and sensitivity. In the past two decades, electrodes modified with polymer films, self-assembled monolayers containing different functional groups and carbon paste have been used as electrochemical sensors. But in recent years, nanomaterials based electrochemical sensors play an important role in the improvement of public health because of its rapid detection, high sensitivity and specificity in clinical diagnostics. To date gold nanoparticles (AuNPs) have received arousing attention mainly due to their fascinating electronic and optical properties as a consequence of their reduced dimensions. These unique properties of AuNPs make them as an ideal candidate for the immobilization of enzymes for biosensing. Further, the electrochemical properties of AuNPs reveal that they exhibit interesting properties by enhancing the electrode conductivity, facilitating electron transfer and improving the detection limit of biomolecules. In this chapter, we summarized the different strategies used for the attachment of AuNPs on electrode surfaces and highlighted the electrochemical determination of glucose, ascorbic acid (AA), uric acid (UA) and dopamine derivatives using the AuNPs modified electrodes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phenols are well known noxious compounds, which are often found in various water sources. A novel analytical method has been researched and developed based on the properties of hemin–graphene hybrid nanosheets (H–GNs). These nanosheets were synthesized using a wet-chemical method, and they have peroxidase-like activity. Also, in the presence of H2O2, the nanosheets are efficient catalysts for the oxidation of the substrate, 4-aminoantipine (4-AP), and the phenols. The products of such an oxidation reaction are the colored quinone-imines (benzodiazepines). Importantly, these products enabled the differentiation of the three common phenols – pyrocatechol, resorcin and hydroquinone, with the use of a novel, spectroscopic method, which was developed for the simultaneous determination of the above three analytes. This spectroscopic method produced linear calibrations for the pyrocatechol (0.4–4.0 mg L−1), resorcin (0.2–2.0 mg L−1) and hydroquinone (0.8–8.0 mg L−1) analytes. In addition, kinetic and spectral data, obtained from the formation of the colored benzodiazepines, were used to establish multi-variate calibrations for the prediction of the three phenol analytes found in various kinds of water; partial least squares (PLS), principal component regression (PCR) and artificial neural network (ANN) models were used and the PLS model performed best.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple, inexpensive and sensitive kinetic spectrophotometric method was developed for the simultaneous determination of three anti-carcinogenic flavonoids: catechin, quercetin and naringenin, in fruit samples. A yellow chelate product was produced in the presence neocuproine and Cu(I) – a reduction product of the reaction between the flavonoids with Cu(II), and this enabled the quantitative measurements with UV–vis spectrophotometry. The overlapping spectra obtained, were resolved with chemometrics calibration models, and the best performing method was the fast independent component analysis (fast-ICA/PCR (Principal component regression)); the limits of detection were 0.075, 0.057 and 0.063 mg L−1 for catechin, quercetin and naringenin, respectively. The novel method was found to outperform significantly the common HPLC procedure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The solubility of ibuprofen was measured in water (W) - ethanol (E) mixtures from 0 to 50% w/w ethanol at 10, 25 and 40 °C by the dissolution method using UV spectrophotometry to determine the ibuprofen concentrations. The UV calibration for ibuprofen in different water - ethanol mixtures showed Beer - Lambert linearity, however the slopes differed, which indicated the structure of the drug is influenced by the solvent system i.e. the water - ethanol ratio. The ibuprofen solubility in water (zero ethanol) is low (~ 50 ppm) but increases near exponentially with increasing ethanol content. At 40 °C, there is phase separation between 34% and 63% w/w E/(E+W). The solubility data will be used to select precipitation crystallizer conditions to directly produce free flowing ibuprofen particles (<5 m) for developing a dry powder inhaler (DPI) formulation for lung delivery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photodynamic therapy (PDT) is an emerging treatment modality for a range of disease classes, both cancerous and noncancerous. This has brought about an active pursuit of new PDT agents that can be optimized for the unique set of photophysical characteristics that are required for a successful clinical agent. We now describe a totally new class of PDT agent, the BF2-chelated 3,5-diaryl-1H-pyrrol-2-yl-3,5-diarylpyrrol-2-ylideneamines (tetraarylazadipyrromethenes). Optimized synthetic procedures have been developed to facilitate the generation of an array of specifically substituted derivatives to demonstrate how control of key therapeutic parameters such as wavelength of maximum absorbance and singlet-oxygen generation can be achieved. Photosensitizer absorption maxima can be varied within the body's therapeutic window between 650 and 700 nm, with high extinction coefficients ranging from 75,000 to 85,000 M(-1) cm(-1). Photosensitizer singlet-oxygen generation level was modulated by the exploitation of the heavy-atom effect. An array of photosensitizers with and without bromine atom substituents gave rise to a series of compounds with varying singlet-oxygen generation profiles. X-ray structural evidence indicates that the substitution of the bromine atoms has not caused a planarity distortion of the photosensitizer. Comparative singlet-oxygen production levels of each photosensitizer versus two standards demonstrated a modulating effect on singlet-oxygen generation depending upon substituent patterns about the photosensitizer. Confocal laser scanning microscopy imaging of 18a in HeLa cervical carcinoma cells proved that the photosensitizer was exclusively localized to the cellular cytoplasm. In vitro light-induced toxicity assays in HeLa cervical carcinoma and MRC5-SV40 transformed fibroblast cancer cell lines confirmed that the heavy-atom effect is viable in a live cellular system and that it can be exploited to modulate assay efficacy. Direct comparison of the efficacy of the photosensitizers 18b and 19b, which only differ in molecular structure by the presence of two bromine atoms, illustrated an increase in efficacy of more than a 1000-fold in both cell lines. All photosensitizers have very low to nondeterminable dark toxicity in our assay system.