18 resultados para Species Composition
Resumo:
Species identification based on short sequences of DNA markers, that is, DNA barcoding, has emerged as an integral part of modern taxonomy. However, software for the analysis of large and multilocus barcoding data sets is scarce. The Basic Local Alignment Search Tool (BLAST) is currently the fastest tool capable of handling large databases (e.g. >5000 sequences), but its accuracy is a concern and has been criticized for its local optimization. However, current more accurate software requires sequence alignment or complex calculations, which are time-consuming when dealing with large data sets during data preprocessing or during the search stage. Therefore, it is imperative to develop a practical program for both accurate and scalable species identification for DNA barcoding. In this context, we present VIP Barcoding: a user-friendly software in graphical user interface for rapid DNA barcoding. It adopts a hybrid, two-stage algorithm. First, an alignment-free composition vector (CV) method is utilized to reduce searching space by screening a reference database. The alignment-based K2P distance nearest-neighbour method is then employed to analyse the smaller data set generated in the first stage. In comparison with other software, we demonstrate that VIP Barcoding has (i) higher accuracy than Blastn and several alignment-free methods and (ii) higher scalability than alignment-based distance methods and character-based methods. These results suggest that this platform is able to deal with both large-scale and multilocus barcoding data with accuracy and can contribute to DNA barcoding for modern taxonomy. VIP Barcoding is free and available at http://msl.sls.cuhk.edu.hk/vipbarcoding/.
Resumo:
Particles emitted by vehicles are known to cause detrimental health effects, with their size and oxidative potential among the main factors responsible. Therefore, understanding the relationship between traffic composition and both the physical characteristics and oxidative potential of particles is critical. To contribute to the limited knowledge base in this area, we investigated this relationship in a 4.5 km road tunnel in Brisbane, Australia. On-road concentrations of ultrafine particles (<100 nm, UFPs), fine particles (PM2.5), CO, CO2 and particle associated reactive oxygen species (ROS) were measured using vehicle-based mobile sampling. UFPs were measured using a condensation particle counter and PM2.5 with a DustTrak aerosol photometer. A new profluorescent nitroxide probe, BPEAnit, was used to determine ROS levels. Comparative measurements were also performed on an above-ground road to assess the role of emission dilution on the parameters measured. The profile of UFP and PM2.5 concentration with distance through the tunnel was determined, and demonstrated relationships with both road gradient and tunnel ventilation. ROS levels in the tunnel were found to be high compared to an open road with similar traffic characteristics, which was attributed to the substantial difference in estimated emission dilution ratios on the two roadways. Principal component analysis (PCA) revealed that the levels of pollutants and ROS were generally better correlated with total traffic count, rather than the traffic composition (i.e. diesel and gasoline-powered vehicles). A possible reason for the lack of correlation with HDV, which has previously been shown to be strongly associated with UFPs especially, was the low absolute numbers encountered during the sampling. This may have made their contribution to in-tunnel pollution largely indistinguishable from the total vehicle volume. For ROS, the stronger association observed with HDV and gasoline vehicles when combined (total traffic count) compared to when considered individually may signal a role for the interaction of their emissions as a determinant of on-road ROS in this pilot study. If further validated, this should not be overlooked in studies of on- or near-road particle exposure and its potential health effects.
Resumo:
Particulate matter is common in our environment and has been linked to human health problems particularly in the ultrafine size range. A range of chemical species have been associated with particulate matter and of special concern are the hazardous chemicals that can accentuate health problems. If the sources of such particles can be identified then strategies can be developed for the reduction of air pollution and consequently, the improvement of the quality of life. In this investigation, particle number size distribution data and the concentrations of chemical species were obtained at two sites in Brisbane, Australia. Source apportionment was used to determine the sources (or factors) responsible for the particle size distribution data. The apportionment was performed by Positive Matrix Factorisation (PMF) and Principal Component Analysis/Absolute Principal Component Scores (PCA/APCS), and the results were compared with information from the gaseous chemical composition analysis. Although PCA/APCS resolved more sources, the results of the PMF analysis appear to be more reliable. Six common sources identified by both methods include: traffic 1, traffic 2, local traffic, biomass burning, and two unassigned factors. Thus motor vehicle related activities had the most impact on the data with the average contribution from nearly all sources to the measured concentrations higher during peak traffic hours and weekdays. Further analyses incorporated the meteorological measurements into the PMF results to determine the direction of the sources relative to the measurement sites, and this indicated that traffic on the nearby road and intersection was responsible for most of the factors. The described methodology which utilised a combination of three types of data related to particulate matter to determine the sources could assist future development of particle emission control and reduction strategies.