74 resultados para Sorghum -- Genetics
Resumo:
Migraine is a common neurological disorder with a significantly heritable component. It is a complex disease and despite numerous molecular genetic studies, the exact pathogenesis causing the neurological disturbance remains poorly understood. Although several known molecular mechanisms have been associated with an increased risk for developing migraine, there remains significant scope for future studies. The majority of studies have investigated the most plausible candidate genes involved in common migraine pathogenesis utilising criteria that takes into account a combination of physiological functionality in conjunction with regions of genomic association. Thus, far genes involved in neurological, vascular or hormonal pathways have been identified and investigated on this basis. Genome-wide association studies (GWAS) studies have helped to identify novel regions that may be associated with migraine and have aided in providing the basis for further molecular investigations. However, further studies utilising sequencing technologies are required to characterise the genetic basis for migraine.
Resumo:
Objectives To investigate the frequency of the ACTN3 R577X polymorphism in elite endurance triathletes, and whether ACTN3 R577X is significantly associated with performance time. Design Cross-sectional study. Methods Saliva samples, questionnaires, and performance times were collected for 196 elite endurance athletes who participated in the 2008 Kona Ironman championship triathlon. Athletes were of predominantly North American, European, and Australian origin. A one-way analysis of variance was conducted to compare performance times between genotype groups. Multiple linear regression analysis was performed to model the effect of questionnaire variables and genotype on performance time. Genotype and allele frequencies were compared to results from different populations using the chi-square test. Results Performance time did not significantly differ between genotype groups, and age, sex, and continent of origin were significant predictors of finishing time (age and sex: p < 5 × 10−6; continent: p = 0.003) though genotype was not. Genotype and allele frequencies obtained (RR 26.5%, RX 50.0%, XX 23.5%, R 51.5%, X 48.5%) were found to be not significantly different from Australian, Spanish, and Italian endurance athletes (p > 0.05), but were significantly different from Kenyan, Ethiopian, and Finnish endurance athletes (p < 0.01). Conclusions Genotype and allele frequencies agreed with those reported for endurance athletes of similar ethnic origin, supporting previous findings for an association between 577X allele and endurance. However, analysis of performance time suggests that ACTN3 does not alone influence endurance performance, or may have a complex effect on endurance performance due to a speed/endurance trade-off.
Resumo:
Migraine is considered to be a multifactorial disorder in which genetic, environmental, and, in the case of menstrual and menstrually related migraine, hormonal events influence the phenotype. Certainly, the role of female sex hormones in migraine has been well established, yet the mechanism behind this well-known relationship remains unclear. This review focuses on the potential role of hormonally related genes in migraine, summarizes results of candidate gene studies to date, and discusses challenges and issues involved in interpreting hormone-related gene results. In light of the molecular evidence presented, we discuss future approaches for analysis with the view to elucidate the complex genetic architecture that underlies the disorder.
Resumo:
Migraine is a common complex neurological disorder with a well-known but poorly characterized genetic liability. The search for migraine susceptibility genes has been the focus of intense research. It is now believed that common migraine is not a single gene disorder, but attributable to several potentially interacting genetic variants. These variants may differ in each sufferer and interact with environmental factors to set the individual migraine threshold. This genetic liability may play an important role in the clinical heterogeneity seen in migraine and also in the variability of treatment response. This review will look at genetic loci implicated in migraine to date and consider their current or prospective role in migraine therapy. To elucidate the complex nature of migraine genetic liability, approaches that consider detailed endophenotypic profiles that encompass treatment response may provide much more relevant information than simple end diagnosis.
Resumo:
Fundamental misconceptions regarding some basic phylogenetic terminology are presented in this opinion piece. An attempt is made to point out why these misconceptions exist and what may be causing the misapplication of terminology. Clarification is providing via basic definitions and simple explanations. Differences between the scientific fields of genetics and population genetics are discussed. The appropriate use of terminology is advocated and alternative terms are proposed to eliminate one potential source of confusion. It is suggested we use 'sequence data' instead of molecular data and 'non-sequence data' instead of morphological data in the field of phylogenetics and systematics.
Resumo:
Sorghum is a food and feed cereal crop adapted to heat and drought and a staple for 500 million of the world’s poorest people. Its small diploid genome and phenotypic diversity make it an ideal C4 grass model as a complement to C3 rice. Here we present high coverage (16–45 × ) resequenced genomes of 44 sorghum lines representing the primary gene pool and spanning dimensions of geographic origin, end-use and taxonomic group. We also report the first resequenced genome of S. propinquum, identifying 8 M high-quality SNPs, 1.9 M indels and specific gene loss and gain events in S. bicolor. We observe strong racial structure and a complex domestication history involving at least two distinct domestication events. These assembled genomes enable the leveraging of existing cereal functional genomics data against the novel diversity available in sorghum, providing an unmatched resource for the genetic improvement of sorghum and other grass species.
Resumo:
The shared nature of genetic information presents new challenges for legal understandings of the self. Within traditional legal discourses the individual is conceptualised as separate and autonomous. In contrast, the genetic individual is understood as inherently relational. This paper analyses the transformation of our understandings of the personal. The transformative processes are assessed through discussion of the changing meanings of privacy in the context of genetic information within families; changing views over access to information about biological parentage by children conceived through assisted reproductive technology; preimplantation genetic diagnosis and the changing context of reproductive decisionmaking.
Resumo:
Sweet sorghum is receiving significant global interest as an agro-industrial crop because of its capacity to co-produce energy, food, and feed products in integrated biorefineries. This report assesses the opportunities to develop a sweet sorghum industry in Australia, reports on research demonstrating the production of energy, food, and feed products, and assesses the potential economic and sustainability benefits of sweet sorghum biorefineries in the Australian context.
Resumo:
Modern genetic research holds out the promise of a bold new future in which humanity has identified and conquered the genetic roots of many diseases. Genetic science also promises to shed light on who we are, what it is that makes us tick, what it is that makes us the way we are — in short, what it is that makes us human. Yet while genetics are a potential saviour (saving us from disease), it also appears as a threat that at the extremes appears to be the stuff of our worst nightmares, such as the prospect, probably more imagined than real, of rows of cloned individuals. The new genetics hold out the promise that through genetics we will be able to determine what we are, a promise that is simultaneously appealing and terrifying. This chapter discusses the cloning of people and parts, the law’s response to cloning, genetics and diversity, a framework for law reform.
Resumo:
Recent developments in genetic science will potentially have a significant impact on reproductive decision-making by adding to the list of conditions which can be diagnosed through prenatal diagnosis. This article analyses the jurisdictional variations that exist in Australian abortion laws and examines the extent to which Australian abortion laws specifically provide for termination of pregnancy on the grounds of fetal disability. The article also examines the potential impact of pre-implantation genetic diagnosis on reproductive decision-making and considers the meaning of reproductive autonomy in the context of the new genetics.
Resumo:
Posttraumatic stress disorder (PTSD) is a complex syndrome that occurs following exposure to a potentially life threatening traumatic event. This review summarises the literature on the genetics of PTSD including gene–environment interactions (GxE), epigenetics and genetics of treatment response. Numerous genes have been shown to be associated with PTSD using candidate gene approaches. Genome-wide association studies have been limited due to the large sample size required to reach statistical power. Studies have shown that GxE interactions are important for PTSD susceptibility. Epigenetics plays an important role in PTSD susceptibility and some of the most promising studies show stress and child abuse trigger epigenetic changes. Much of the molecular genetics of PTSD remains to be elucidated. However, it is clear that identifying genetic markers and environmental triggers has the potential to advance early PTSD diagnosis and therapeutic interventions and ultimately ease the personal and financial burden of this debilitating disorder.
Resumo:
Background Increased disease resistance is a key target of cereal breeding programs, with disease outbreaks continuing to threaten global food production, particularly in Africa. Of the disease resistance gene families, the nucleotide-binding site plus leucine-rich repeat (NBS-LRR) family is the most prevalent and ancient and is also one of the largest gene families known in plants. The sequence diversity in NBS-encoding genes was explored in sorghum, a critical food staple in Africa, with comparisons to rice and maize and with comparisons to fungal pathogen resistance QTL. Results In sorghum, NBS-encoding genes had significantly higher diversity in comparison to non NBS-encoding genes and were significantly enriched in regions of the genome under purifying and balancing selection, both through domestication and improvement. Ancestral genes, pre-dating species divergence, were more abundant in regions with signatures of selection than in regions not under selection. Sorghum NBS-encoding genes were also significantly enriched in the regions of the genome containing fungal pathogen disease resistance QTL; with the diversity of the NBS-encoding genes influenced by the type of co-locating biotic stress resistance QTL. Conclusions NBS-encoding genes are under strong selection pressure in sorghum, through the contrasting evolutionary processes of purifying and balancing selection. Such contrasting evolutionary processes have impacted ancestral genes more than species-specific genes. Fungal disease resistance hot-spots in the genome, with resistance against multiple pathogens, provides further insight into the mechanisms that cereals use in the “arms race” with rapidly evolving pathogens in addition to providing plant breeders with selection targets for fast-tracking the development of high performing varieties with more durable pathogen resistance.
Resumo:
The water mouse, Xeromys myoides, is currently recognised as a vulnerable species in Australia, inhabiting a small number of distinct and isolated coastal regions of Queensland and the Northern Territory. An examination of the evolutionary history and contemporary influences shaping the genetic structure of this species is required to make informed conservation management decisions. Here, we report the first analysis undertaken on the phylogeography and population genetics of the water mouse across its mainland Australian distribution. Genetic diversity was assessed at two mitochondrial DNA (Cytochrome b, 1000 bp; D-loop, 400 bp) and eight microsatellite DNA loci. Very low genetic diversity was found, indicating that water mice underwent a recent expansion throughout their Australian range and constitute a single evolutionarily significant unit. Microsatellite analyses revealed that the highest genetic diversity was found in the Mackay region of central Queensland; population substructure was also identified, suggesting that local populations may be isolated in this region. Conversely, genetic diversity in the Coomera region of south-east Queensland was very low and the population in this region has experienced a significant genetic bottleneck. These results have significant implications for future management, particularly in terms of augmenting populations through translocations or reintroducing water mice in areas where they have gone extinct.