234 resultados para Size-Ramsey numbers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Size distributions of expiratory droplets expelled during coughing and speaking and the velocities of the expiration air jets of healthy volunteers were measured. Droplet size was measured using the Interferometric Mie imaging (IMI) technique while the Particle Image Velocimetry (PIV) technique was used for measuring air velocity. These techniques allowed measurements in close proximity to the mouth and avoided air sampling losses. The average expiration air velocity was 11.7 m/s for coughing and 3.9 m/s for speaking. Under the experimental setting, evaporation and condensation effects had negligible impact on the measured droplet size. The geometric mean diameter of droplets from coughing was 13.5m and it was 16.0m for speaking (counting 1 to 100). The estimated total number of droplets expelled ranged from 947 – 2085 per cough and 112 – 6720 for speaking. The estimated droplet concentrations for coughing ranged from 2.4 - 5.2cm-3 per cough and 0.004 – 0.223 cm-3 for speaking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new Expiratory Droplet Investigation System (EDIS) was used to conduct the most comprehensive program of study to date, of the dilution corrected droplet size distributions produced during different respiratory activities.----- Distinct physiological processes were responsible for specific size distribution modes. The majority of particles for all activities were produced in one or more modes, with diameters below 0.8 µm. That mode occurred during all respiratory activities, including normal breathing. A second mode at 1.8 µm was produced during all activities, but at lower concentrations.----- Speech produced particles in modes near 3.5 µm and 5 µm. The modes became most pronounced during continuous vocalization, suggesting that the aerosolization of secretions lubricating the vocal chords is a major source of droplets in terms of number.----- Non-eqilibrium droplet evaporation was not detectable for particles between 0.5 and 20 μm implying that evaporation to the equilibrium droplet size occurred within 0.8 s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Noise is a significant barrier to sleep for acute care hospital patients, and sleep has been shown to be therapeutic for health, healing and recovery. Scheduled quiet time interventions to promote inpatient rest and sleep have been successfully trialled in critical care but not in acute care settings. Objectives: The study aim was to evaluate as cheduled quiet time intervention in an acute care setting. The study measured the effect of a scheduled quiet time on noise levels, inpatients’ rest and sleep behaviour, and wellbeing. The study also examined the impact of the intervention on patients’, visitors’ and health professionals’ satisfaction, and organisational functioning. Design: The study was a multi-centred non-randomised parallel group trial. Settings: The research was conducted in the acute orthopaedic wards of two major urban public hospitals in Brisbane, Australia. Participants: All patientsadmitted to the two wards in the5-month period of the study were invited to participate, withafinalsample of 299 participants recruited. This sample produced an effect size of 0.89 for an increase in the number of patients asleep during the quiet time. Methods: Demographic data were collected to enable comparison between groups. Data for noise level, sleep status, sleepiness and well being were collected using previously validated instruments: a Castle Model 824 digital sound level indicator; a three point sleep status scale; the Epworth Sleepiness Scale; and the SF12 V2 questionnaire. The staff, patient and visitor surveys on the experimental ward were adapted from published instruments. Results: Significant differences were found between the two groups in mean decibel level and numbers of patients awake and asleep. The difference in mean measured noise levels between the two environments corresponded to a ‘perceived’ difference of 2 to 1. There were significant correlations between average decibel level and number of patients awake and asleep in the experimental group, and between average decibel level and number of patients awake in the control group. Overall, patients, visitors and health professionals were satisfied with the quiet time intervention. Conclusions: The findings show that a quiet time intervention on an acute care hospital ward can affect noise level and patient sleep/wake patterns during the intervention period. The overall strongly positive response from surveys suggests that scheduled quiet time would be a positively perceived intervention with therapeutic benefit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In truck manufacturing, the exhaust and air inlet pipes are specialized equipment that requires highly skilled, heavy machinery and small batch production methods. This paper describes a project to develop the computer numerically controlled (CNC) pipe bending process for a truck component manufacturer. The company supplies a huge range of heavy duty truck parts to the domestic market and is a significant supplier in Australia. The company has been using traditional methods of machine assisted manual pipe bending techniques. In a drive of continuous improvement, the company has acquired a pre-owned CNC bending machine capable of bending pipes automatically up to 25 bends. However, due to process mismatch, this machine is only used for single bending operation. The researchers studied the bending system and changed the manufacturing process. Using an example exhaust pipe as the benchmark, a significant drop of manufacturing lead time from 70 minutes to 40 minutes for each pipe was demonstrated. There was also a decrease of material cost due to the multiple bends part in one piece without cutting excessive materials for each single bend like it used to be.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanical harmonic transmissions are relatively new kind of drives having several unusual features. For example, they can provide reduction ratio up to 500:1 in one stage, have very small teeth module compared to conventional drives and very large number of teeth (up to 1000) on a flexible gear. If for conventional drives manufacturing methods are well-developed, fabrication of large size harmonic drives presents a challenge. For example, how to fabricate a thin shell of 1.7m in diameter and wall thickness of 30mm having high precision external teeth at one end and internal splines at the other end? It is so flexible that conventional fabrication methods become unsuitable. In this paper special fabrication methods are discussed that can be used for manufacturing of large size harmonic drive components. They include electro-slag welding and refining, the use of special expandable devices to locate and hold a flexible gear, welding peripheral parts of disks with wear resistant materials with subsequent machining and others. These fabrication methods proved to be effective and harmonic drives built with the use of these innovative technologies have been installed on heavy metallurgical equipment and successfully tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is evidence that many heating, ventilating & air conditioning (HVAC) systems, installed in larger buildings, have more capacity than is ever required to keep the occupants comfortable. This paper explores the reasons why this can occur, by examining a typical brief/design/documentation process. Over-sized HVAC systems cost more to install and operate and may not be able to control thermal comfort as well as a “right-sized” system. These impacts are evaluated, where data exists. Finally, some suggestions are developed to minimise both the extent of, and the negative impacts of, HVAC system over-sizing, for example: • Challenge “rules of thumb” and/or brief requirements which may be out of date. • Conduct an accurate load estimate, using AIRAH design data, specific to project location, and then resist the temptation to apply “safety factors • Use a load estimation program that accounts for thermal storage and diversification of peak loads for each zone and air handling system. • Select chiller sizes and staged or variable speed pumps and fans to ensure good part load performance. • Allow for unknown future tenancies by designing flexibility into the system, not by over-sizing. For example, generous sizing of distribution pipework and ductwork will allow available capacity to be redistributed. • Provide an auxiliary tenant condenser water loop to handle high load areas. • Consider using an Integrated Design Process, build an integrated load and energy use simulation model and test different operational scenarios • Use comprehensive Life Cycle Cost analysis for selection of the most optimal design solutions. This paper is an interim report on the findings of CRC-CI project 2002-051-B, Right-Sizing HVAC Systems, which is due for completion in January 2006.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brand loyalty is a concept that has garnered considerable interest over recent years from both marketing practitioners and academics alike. While marketers are primarily interested in ways they can generate and increase brand loyalty from their customers, academics strive to conducts research which investigates the antecedents and consequences of customer loyalty (See DeWitt, Nguyen and Marshall 2008; Russell-Bennett, McColl-Kennedy and Coote 2007).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emissions from airport operations are of significant concern because of their potential impact on local air quality and human health. The currently limited scientific knowledge of aircraft emissions is an important issue worldwide, when considering air pollution associated with airport operation, and this is especially so for ultrafine particles. This limited knowledge is due to scientific complexities associated with measuring aircraft emissions during normal operations on the ground. In particular this type of research has required the development of novel sampling techniques which must take into account aircraft plume dispersion and dilution as well as the various particle dynamics that can affect the measurements of the aircraft engine plume from an operational aircraft. In order to address this scientific problem, a novel mobile emission measurement method called the Plume Capture and Analysis System (PCAS), was developed and tested. The PCAS permits the capture and analysis of aircraft exhaust during ground level operations including landing, taxiing, takeoff and idle. The PCAS uses a sampling bag to temporarily store a sample, providing sufficient time to utilize sensitive but slow instrumental techniques to be employed to measure gas and particle emissions simultaneously and to record detailed particle size distributions. The challenges in relation to the development of the technique include complexities associated with the assessment of the various particle loss and deposition mechanisms which are active during storage in the PCAS. Laboratory based assessment of the method showed that the bag sampling technique can be used to accurately measure particle emissions (e.g. particle number, mass and size distribution) from a moving aircraft or vehicle. Further assessment of the sensitivity of PCAS results to distance from the source and plume concentration was conducted in the airfield with taxiing aircraft. The results showed that the PCAS is a robust method capable of capturing the plume in only 10 seconds. The PCAS is able to account for aircraft plume dispersion and dilution at distances of 60 to 180 meters downwind of moving a aircraft along with particle deposition loss mechanisms during the measurements. Characterization of the plume in terms of particle number, mass (PM2.5), gaseous emissions and particle size distribution takes only 5 minutes allowing large numbers of tests to be completed in a short time. The results were broadly consistent and compared well with the available data. Comprehensive measurements and analyses of the aircraft plumes during various modes of the landing and takeoff (LTO) cycle (e.g. idle, taxi, landing and takeoff) were conducted at Brisbane Airport (BNE). Gaseous (NOx, CO2) emission factors, particle number and mass (PM2.5) emission factors and size distributions were determined for a range of Boeing and Airbus aircraft, as a function of aircraft type and engine thrust level. The scientific complexities including the analysis of the often multimodal particle size distributions to describe the contributions of different particle source processes during the various stages of aircraft operation were addressed through comprehensive data analysis and interpretation. The measurement results were used to develop an inventory of aircraft emissions at BNE, including all modes of the aircraft LTO cycle and ground running procedures (GRP). Measurements of the actual duration of aircraft activity in each mode of operation (time-in-mode) and compiling a comprehensive matrix of gas and particle emission rates as a function of aircraft type and engine thrust level for real world situations was crucial for developing the inventory. The significance of the resulting matrix of emission rates in this study lies in the estimate it provides of the annual particle emissions due to aircraft operations, especially in terms of particle number. In summary, this PhD thesis presents for the first time a comprehensive study of the particle and NOx emission factors and rates along with the particle size distributions from aircraft operations and provides a basis for estimating such emissions at other airports. This is a significant addition to the scientific knowledge in terms of particle emissions from aircraft operations, since the standard particle number emissions rates are not currently available for aircraft activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bag sampling techniques can be used to temporarily store an aerosol and therefore provide sufficient time to utilize sensitive but slow instrumental techniques for recording detailed particle size distributions. Laboratory based assessment of the method were conducted to examine size dependant deposition loss coefficients for aerosols held in VelostatTM bags conforming to a horizontal cylindrical geometry. Deposition losses of NaCl particles in the range of 10 nm to 160 nm were analysed in relation to the bag size, storage time, and sampling flow rate. Results of this study suggest that the bag sampling method is most useful for moderately short sampling periods of about 5 minutes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mobile robots are widely used in many industrial fields. Research on path planning for mobile robots is one of the most important aspects in mobile robots research. Path planning for a mobile robot is to find a collision-free route, through the robot’s environment with obstacles, from a specified start location to a desired goal destination while satisfying certain optimization criteria. Most of the existing path planning methods, such as the visibility graph, the cell decomposition, and the potential field are designed with the focus on static environments, in which there are only stationary obstacles. However, in practical systems such as Marine Science Research, Robots in Mining Industry, and RoboCup games, robots usually face dynamic environments, in which both moving and stationary obstacles exist. Because of the complexity of the dynamic environments, research on path planning in the environments with dynamic obstacles is limited. Limited numbers of papers have been published in this area in comparison with hundreds of reports on path planning in stationary environments in the open literature. Recently, a genetic algorithm based approach has been introduced to plan the optimal path for a mobile robot in a dynamic environment with moving obstacles. However, with the increase of the number of the obstacles in the environment, and the changes of the moving speed and direction of the robot and obstacles, the size of the problem to be solved increases sharply. Consequently, the performance of the genetic algorithm based approach deteriorates significantly. This motivates the research of this work. This research develops and implements a simulated annealing algorithm based approach to find the optimal path for a mobile robot in a dynamic environment with moving obstacles. The simulated annealing algorithm is an optimization algorithm similar to the genetic algorithm in principle. However, our investigation and simulations have indicated that the simulated annealing algorithm based approach is simpler and easier to implement. Its performance is also shown to be superior to that of the genetic algorithm based approach in both online and offline processing times as well as in obtaining the optimal solution for path planning of the robot in the dynamic environment. The first step of many path planning methods is to search an initial feasible path for the robot. A commonly used method for searching the initial path is to randomly pick up some vertices of the obstacles in the search space. This is time consuming in both static and dynamic path planning, and has an important impact on the efficiency of the dynamic path planning. This research proposes a heuristic method to search the feasible initial path efficiently. Then, the heuristic method is incorporated into the proposed simulated annealing algorithm based approach for dynamic robot path planning. Simulation experiments have shown that with the incorporation of the heuristic method, the developed simulated annealing algorithm based approach requires much shorter processing time to get the optimal solutions in the dynamic path planning problem. Furthermore, the quality of the solution, as characterized by the length of the planned path, is also improved with the incorporated heuristic method in the simulated annealing based approach for both online and offline path planning.