136 resultados para Shu jing
Resumo:
Cobalt hydroxide, cobalt oxyhydroxide and cobalt oxide nanomaterials were synthesized through simple soft chemistry. The cobalt hydroxide displays hexagonal morphology with clear edges 20 nm long. This morphology and nanosize is retained through to cobalt oxide Co3O4 through a topotactical relationship. Cobalt oxyhydroxide and cobalt oxide nanomaterials were synthesized through oxidation and low temperature calcination from the as-prepared cobalt hydroxide. Characterisation of these cobalt-based nanomaterials were fully developed, including X-ray diffraction, transmission electron microscopy combined with selected area electron diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and thermal gravimetric analysis. Bonding of the divalent cobalt hydroxide from the oxyhydroxide and oxides by studying their high resolution XPS spectra for Co 2p3/2 and O 1s. Raman spectroscopy of the as-prepared Co(OH)2, CoO(OH) and Co3O4 nanomaterials characterised each material. The thermal stability of the materials Co(OH)2 and CoO(OH) were established. This research has developed methodology for the synthesis of cobalt oxide and cobalt oxyhydroxide nanodiscs at low temperatures.
Resumo:
In recent years, increasing numbers of Chinese migrants have come to Australia to study or to live. In doing so, they have entered a new cultural space. They are faced with many challenges, not only to do with study experience, workplace experience and life-style practices, but also to do with language, communication, culture and identity. Such new challenges can feel dangerous, unstable and uncomfortable as they require moves out of the safety zone of primary cultural experience. This qualitative research study investigates the perceptions and narratives of three Taiwanese-Australian migrants in terms of their experience of this process of acculturation and social identity construction as migrant tertiary students in the new Australian context and of their subsequent experience professionally. Their accounts of where they see themselves to have 'landed' in terms of their acculturation process and identity construction might provide relevant insights to the experience of hybridity which is intercultural Australia.
Resumo:
Genetic polymorphisms in hepatically expressed UGT1A1 and UGT1A9 contribute to the interindividual variability i-n irinotecan disposition and toxicity. We screened UGT1A1 (UGT1A1*60, g.−3140G>A, UGT1A1*28 and UGT1A1*6) and UGT1A9 (g.−118(T)9>10 and I399C>T) genes for polymorphic variants in the promoter and coding regions, and the genotypic effect of UGT1A9 I399C>T polymorphism on irinotecan disposition in Asian cancer patients was investigated. Blood samples were collected from 45 patients after administration of irinotecan as a 90 min intravenous infusion of 375 mg/m2 once in every 3 weeks. Genotypic–phenotypic correlates showed that cancer patients heterozygous or homozygous for the I399C>T allele had approximately 2-fold lower systemic exposure to SN-38 (P<0.05) and a trend towards a higher relative extent of glucuronidation (REG) of SN-38 (P>0.05). UGT1A1–1A9 diplotype analysis showed that patients harbouring the H1/H2 (TG6GT10T/GG6GT9C) diplotype had 2.4-fold lower systemic exposure to SN-38 glucuronide (SN-38G) compared with patients harbouring the H1/H5 (TG6GT10T/GG6GT10C) diplotype (P=0.025). In conclusion, this in vivo study supports the in vitro findings of Girard et al. and suggests that the UGT1A9 I399C>T variant may be an important glucuronidating allele affecting the pharmacokinetics of SN-38 and SN-38G in Asian cancer patients receiving irinotecan chemotherapy.
Resumo:
The growth and differentiation of mesenchymal stem cells is controlled by various growth factors, the activities of which can be modulated by heparan sulfates. We have previously underscored the necessity of sulfated glycosaminoglycans for the FGF-2-stimulated differentiation of osteoprogenitor cells. Here we show that exogenous application of heparan sulfate to cultures of primary rat MSCs stimulates their proliferation leading to increased expression of osteogenic markers and enhanced bone nodule formation. FGF-2 can also increase the proliferation and osteogenic differentiation of rMSCs when applied exogenously during their linear growth. However, as opposed to exogenous HS, the continuous use of FGF-2 during in vitro differentiation completely blocked rMSC mineralization. Furthermore, we show that the effects of both FGF-2 and HS are mediated through FGF receptor 1 (FGFR1) and that inhibition of signaling through this receptor arrests cell growth resulting in the cells being unable to reach the critical density necessary to induce differentiation. Interestingly, blocking FGFR1 signaling in post-confluent osteogenic cultures significantly increased calcium deposition. Taken together our data clearly suggests that FGFR1 signaling plays an important role during osteogenic differentiation, firstly by stimulating cell growth that is closely followed by an inhibitory affect once the cells have reached confluence. It also underlines the importance of HS as a co-receptor for the signaling of endogenous FGF-2 and suggests that purified glycosaminoglycans may be attractive alternatives to growth factors for improved ex vivo growth and differentiation of MSCs.
Resumo:
The Mobile Learning Kit is a new digital learning application that allows students and teachers to compose, publish, discuss and evaluate their own mobile learning games and events. The research field was interaction design in the context of mobile learning. The research methodology was primarily design-based supported by collaboration between participating disciplines of game design, education and information technology. As such, the resulting MiLK application is a synthesis of current pedagogical models and experimental interaction design techniques and technologies. MiLK is a dynamic learning resource for incorporating both formal and informal teaching and learning practices while exploiting mobile phones and contemporary digital social tools in innovative ways. MiLK explicitly addresses other predominant themes in educational scholarship that relate to current education innovation and reform such as personalised learning, life-long learning and new learning spaces. The success of this project is indicated through rigorous trials and actual uptake of MiLK by international participants in Australia, UK, US and South Africa. MiLK was awarded for excellence in the use of emerging technologies for improved learning and teaching as a finalist (top 3) in the Handheld Learning and Innovation Awards in the UK in 2008. MiLK was awarded funding from the Australasian CRC for Interaction Design in 2008 to prepare the MiLK application for development. MiLK has been awarded over $230,000 from ACID since 2006. The resulting application and research materials are now being commercialised by a new company, ‘ACID Services’.
Resumo:
This study was aimed at examining the safety climate and relational conflict within teams at the individual level. A sample of 372 respondents, divided into 50 teams, was used to test our hypothesis. It was proposed - and discovered - that team members’ individual differences in need for closure mitigated the negative relationship between perceptions of team safety climate and team relational conflict. The implications of our findings and the study’s limitations are discussed.
Resumo:
The transition of cubic indium hydroxide to cubic indium oxide has been studied by thermogravimetric analysis complimented with hot stage Raman spectroscopy. Thermal analysis shows the transition of In(OH)3 to In2O3 occurs at 219°C. The structure and morphology of In(OH)3 synthesised using a soft chemical route at low temperatures was confirmed by X-ray diffraction and scanning electron microscopy. A topotactical relationship exists between the micro/nano-cubes of In(OH)3 and In2O3. The Raman spectrum of In(OH)3 is characterised by an intense sharp band at 309 cm-1 attributed to ν1 In-O symmetric stretching mode, bands at 1137 and 1155 cm-1 attributed to In-OH δ deformation modes, bands at 3083, 3215, 3123 and 3262 cm-1 assigned to the OH stretching vibrations. Upon thermal treatment of In(OH)3 new Raman bands are observed at 125, 295, 488 and 615 cm-1 attributed to In2O3. Changes in the structure of In(OH)3 with thermal treatment is readily followed by hot stage Raman spectroscopy.
Resumo:
This paper suggests that collaborative design can be an effective tool to promote social change. A co-design methodology and the results of its application in branding the Waterfall Way (New South Wales, Australia) as an eco- and nature-based tourism destination are presented as an example. The co-design exercise actively involved stakeholders in all stages of the design process, harnessing local tacit knowledge in relation to communication design, stimulating reflection upon what is special about the places, and consequently reinforcing a sense of belonging and the environmental and cultural conservation of place. The achieved results reflect the involvement and ownership of the community towards the design process. However, the application of a collaborative brand design methodology produced more than just a destination brand that is attractive to visitors, in line with local values, ways of living and the environment. It helped to catalyse a social network around tourism, triggering self-organising activity amongst stakeholders, who started to liaise with each other around the emergent regional identity - represented by the new brand they created together. The Waterfall Way branding process is a good example of social construction of shared understanding in and through design, showing that design exercises can have a significant social impact not only on the final product, but also on the realities of people involved in the process.
Resumo:
Structural changes in intercalated kaolinite after wet ball-milling were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), specific surface area (SSA) and Fourier Transform Infrared spectroscopy (FTIR). The X-ray diffraction pattern at room temperature indicated that the intercalation of potassium acetate into kaolinite causes an increase of the basal spacing from 0.718 to 1.42 nm, and with the particle size reduction, the surface area increased sharply with the intercalation and delamination by ball-milling. The wet ball-milling kaolinite after intercalation did not change the structural order, and the particulates have high aspect ratio according SEM images.
Self-efficacy, outcome expectations and self-care behaviour in people with type 2 diabetes in Taiwan
Resumo:
Aims. To explore differences in self-care behaviour according to demographic and illness characteristics; and relationships among self-care behaviour and demographic and illness characteristics, efficacy expectations and outcome expectations of people with type 2 diabetes in Taiwan. Background. Most people with diabetes do not control their disease appropriately in Taiwan. Enhanced self-efficacy towards managing diseases can be an effective way of improving disease control as proposed by the self-efficacy model which provides a useful framework for understanding adherence to self-care behaviours. Design and methods. The sample comprised 145 patients with type 2 diabetes aged 30 years or more from diabetes outpatient clinics in Taipei. Data were collected using a self-administered questionnaire for this study. One-way anova, t-tests, Pearson product moment correlation and hierarchical regression were analysed for the study. Results. Significant differences were found: between self-care behaviour and complications (t = −2·52, p < 0·01) and patient education (t = −1·96, p < 0·05). Self-care behaviour was significantly and positively correlated with duration of diabetes (r = 0·36, p < 0·01), efficacy expectations (r = 0·54, p < 0·01) and outcome expectations (r = 0·44, p < 0·01). A total of 39·1% of variance in self-care behaviour can be explained by duration of diabetes, efficacy expectations and outcome expectations. Conclusions. Findings support the use of the self-efficacy model as a framework for understanding adherence to self-care behaviour. Relevance to clinical practice. Using self-efficacy theory when designing patient education interventions for people with type 2 diabetes will enhance self-management routines and assist in reducing major complications in the future.
Resumo:
Thermogravimetric analysis-mass spectrometry, X-ray diffraction and scanning electron microscopy (SEM) were used to characterize eight kaolinite samples from China. The results show that the thermal decomposition occurs in three main steps (a) desorption of water below 100 °C, (b) dehydration at about 225 °C, (c) well defined dehydroxylation at around 450 °C. It is also found that decarbonization took place at 710 °C due to the decomposition of calcite impurity in kaolin. The temperature of dehydroxylation of kaolinite is found to be influenced by the degree of disorder of the kaolinite structure and the gases evolved in the decomposition process can be various because of the different amount and kinds of impurities. It is evident by the mass spectra that the interlayer carbonate from impurity of calcite and organic carbon is released as CO2 around 225, 350 and 710 °C in the kaolinite samples.
Resumo:
Two kinds of coal-bearing kaolinite from China were analysed by X-ray diffraction (XRD), Thermogravimetric analysis-mass spectrometry (TG-MS), infrared emission spectroscopy. Thermal decomposition occurs in a series of steps attributed to (a) desorption of water at 68 °C for Datong coal bearing strata kaolinite and 56 °C for Xiaoxian with mass losses of 0.36 % and 0.51 % (b) decarbonization at 456 °C for Datong coal bearing strata kaolinite and 431 °C for Xiaoxian kaolinite, (c) dehydroxylation takes place in two steps at 589 and 633 °C for Datong coal bearing strata kaolinite and at 507 °C and 579 °C for Xiaoxian kaolinite. This mineral were further characterised by infrared emission spectroscopy (IES). Well defined hydroxyl stretching bands at around 3695, 3679, 3652 and 3625 cm-1 are observed. At 650 °C all intensity in these bands is lost in harmony with the thermal analysis results. Characteristic functional groups from coal are observed at 1918, 1724 and 1459 cm-1. The intensity of these bands decrease by thermal treatment and is lost by 700 °C.
Resumo:
Mid-infrared (MIR) and near-infrared (NIR) spectroscopy have been compared and evaluated for differentiating kaolinite, coal bearing kaolinite and halloysite. Kaolinite, coal bearing kaolinite and halloysite are the three relative abundant mineral of the kaolin group, especially in China. In the MIR spectra, the differences are shown in the 3000-3600 cm-1 between kaolinite and halloysite. It can not be obviously differentiated the kaolinite and halloysite, let alone kaolinite and coal bearing kaolinite. However, NIR, together with MIR, give us the sufficient evidence to differentiate the kaolinite and halloysite, especially kaolinite and coal bearing kaolinite. There are obvious differences between kaolinite and halloysite in the all range of their spectra, and it also show some difference between kaolinite and coal bearing kaolinite. Therefore, the reproducibility of measurement, signal to noise ratio and richness of qualitative information should be simultaneously considered for proper selection of a spectroscopic method for mineral analysis.
Resumo:
The structure and thermal stability between typical China kaolinite and halloysite were analysed by X-ray diffraction (XRD), infrared spectroscopy, infrared emission spectroscopy (IES) and Raman spectroscopy. Infrared emission spectroscopy over the temperature range of 300 to 700 °C has been used to characterise the thermal decomposition of both kaolinite and halloysite. Halloysite is characterised by two bands in the water bending region at 1629 and 1648 cm-1, attributed to structure water and coordinated water in the interlayer. Well defined hydroxyl stretching bands at around 3695, 3679, 3652 and 3625 cm-1 are observed for both kaolinite and halloysite. In the 550 °C infrared emission spectrum of halloysite is similar to that of kaolinite in 650-1350 cm-1 region. The infrared emission spectra of halloysite were found to be considerably different to that of kaolinite at lower temperatures. This difference is attributed to the fundamental difference in the structure of the two minerals.