82 resultados para Segmental osteotomy
Resumo:
Mesenchymal progenitor cells (MPCs) represent an attractive cell population for bone tissue engineering. Their special immunological characteristics suggest that MPCs may be used in an allogenic application. The objective of this study was to compare the regenerative potential of autologous vs. allogenic MPCs in an ovine critical-sized segmental defect model. Ovine MPCs were isolated from bone marrow aspirates, expanded and cultured with osteogenic media for two weeks before implantation. Autologous and allogenic transplantation was performed by using the cell-seeded scaffolds, unloaded scaffolds and the application of autologous bone grafts served as control groups (n=6). Bone healing was assessed twelve weeks after surgery by radiology, micro computed tomography, biomechanical testing and histology. Radiology, biomechanical testing and histology revealed no significant difference in bone formation between the autologous and allogenic group. Both cell groups showed more bone formation than the scaffold alone, whereas the biomechanical data showed no significant differences between the cell-groups and the unloaded scaffolds. The results of the study suggest that scaffold based bone tissue engineering using allogenic cells offers the potential for an off the shelf product. Therefore, the results of this study serve as an important baseline for the translation of the assessed concepts into clinical application.
Resumo:
Introduction. Calculating segmental (vertebral level-by-level) torso masses in Adolescent Idiopathic Scoliosis (AIS) patients allows the gravitational loading on the scoliotic spine during relaxed standing to be determined. This study used CT scans of AIS patients to measure segmental torso masses and explores how joint moments in the coronal plane are affected by changes in the position of the intervertebral joint’s axis of rotation; particularly at the apex of a scoliotic major curve. Methods. Existing low dose CT data from the Paediatric Spine Research Group was used to calculate vertebral level-by-level torso masses and joint torques occurring in the spine for a group of 20 female AIS patients (mean age 15.0 ± 2.7 years, mean Cobb angle 53 ± 7.1°). Image processing software, ImageJ (v1.45 NIH USA) was used to threshold the T1 to L5 CT images and calculate the segmental torso volume and mass corresponding to each vertebral level. Body segment masses for the head, neck and arms were taken from published anthropometric data. Intervertebral (IV) joint torques at each vertebral level were found using principles of static equilibrium together with the segmental body mass data. Summing the torque contributions for each level above the required joint, allowed the cumulative joint torque at a particular level to be found. Since there is some uncertainty in the position of the coronal plane Instantaneous Axis of Rotation (IAR) for scoliosis patients, it was assumed the IAR was located in the centre of the IV disc. A sensitivity analysis was performed to see what effect the IAR had on the joint torques by moving it laterally 10mm in both directions. Results. The magnitude of the torso masses from T1-L5 increased inferiorly, with a 150% increase in mean segmental torso mass from 0.6kg at T1 to 1.5kg at L5. The magnitudes of the calculated coronal plane joint torques during relaxed standing were typically 5-7 Nm at the apex of the curve, with the highest apex joint torque of 7Nm being found in patient 13. Shifting the assumed IAR by 10mm towards the convexity of the spine, increased the joint torque at that level by a mean 9.0%, showing that calculated joint torques were moderately sensitive to the assumed IAR location. When the IAR midline position was moved 10mm away from the convexity of the spine, the joint torque reduced by a mean 8.9%. Conclusion. Coronal plane joint torques as high as 7Nm can occur during relaxed standing in scoliosis patients, which may help to explain the mechanics of AIS progression. This study provides new anthropometric reference data on vertebral level-by-level torso mass in AIS patients which will be useful for biomechanical models of scoliosis progression and treatment. However, the CT scans were performed in supine (no gravitational load on spine) and curve magnitudes are known to be smaller than those measured in standing.
Resumo:
This thesis is about the use of different cells for bone tissue engineering. The cells were used in combination with a novel biomaterial in a large tibial bone defects in a sheep model. Furthermore this study developed a novel cell delivery procedure for bone tissue engineering. This novel procedure of cell delivery could overcome the current problems of cell-based tissue engineering and serve as a baseline for the translation of novel concepts into clinical application.
Resumo:
Introduction: Calculating segmental (vertebral level-by-level) torso masses in Adolescent Idiopathic Scoliosis (AIS) patients allows the gravitational loading on the scoliotic spine during relaxed standing to be estimated. This study used supine CT scans of AIS patients to measure segmental torso masses and explored the joint moments in the coronal plane, particularly at the apex of a scoliotic major curve. Methods: Existing low dose CT data from the Paediatric Spine Research Group was used to calculate vertebral level-by-level torso masses and joint moments occurring in the spine for a group of 20 female AIS patients with right sided thoracic curves. The mean age was 15.0 ± 2.7 years and all curves were classified Lenke Type 1 with a mean Cobb angle 52 ± 5.9°. Image processing software, ImageJ (v1.45 NIH USA) was used to create reformatted coronal plane images, reconstruct vertebral level-by-level torso segments and subsequently measure the torso volume corresponding to each vertebral level. Segment mass was then determined by assuming a tissue density of 1.04x103 kg/m3. Body segment masses for the head, neck and arms were taken from published anthropometric data (Winter 2009). Intervertebral joint moments in the coronal plane at each vertebral level were found from the position of the centroid of the segment masses relative to the joint centres with the segmental body mass data. Results and Discussion: The magnitude of the torso masses from T1-L5 increased inferiorly, with a 150% increase in mean segmental torso mass from 0.6kg at T1 to 1.5kg at L5. The magnitudes of the calculated coronal plane joint moments during relaxed standing were typically 5-7 Nm at the apex of the curve, with the highest apex joint torque of 7Nm. The CT scans were performed in the supine position and curve magnitudes are known to be 7-10° smaller than those measured in standing, due to the absence of gravity acting on the spine. Hence, it can be expected that the moments produced by gravity in the standing individual will be greater than those calculated here.
Resumo:
Introduction Calculating segmental torso masses in Adolescent Idiopathic Scoliosis (AIS) patients allows the gravitational loading on the scoliotic spine during relaxed standing to be estimated. Methods Low dose CT data was used to calculate vertebral level-by-level torso masses and spinal joint torques for 20 female AIS patients (mean age 15.0 ± 2.7 years, mean Cobb angle 53 ± 7.1°). ImageJ software (v1.45 NIH USA) was used to threshold the T1 to L5 CT images and calculate the segmental torso volume and mass for each vertebral level. Masses for the head, neck and arms were taken from published data.1 Intervertebral joint torques in the coronal and sagittal planes at each vertebral level were found from the position of the centroid of the segment masses relative to the joint centres (assumed to be at the centre of the intervertebral disc). The joint torque at each level was found by summing torque contributions for all segments above that joint. Results Segmental torso mass increased from 0.6kg at T1 to 1.5kg at L5. The coronal plane joint torques due to gravity were 5-7Nm at the apex of the curve; sagittal torques were 3-5.4Nm. Conclusion CT scans were in the supine position and curve magnitudes are known to be smaller than those in standing.2 Hence, this study has shown that gravity produces joint torques potentially of higher than 7Nm in the coronal plane and 5Nm in the sagittal plane during relaxed standing in scoliosis patients. The magnitude of these torques may help to explain the mechanics of AIS progression and the mechanics of bracing. This new data on torso segmental mass in AIS patients will assist biomechanical models of scoliosis.
Resumo:
Background Large segmental defects in bone do not heal well and present clinical challenges. This study investigated modulation of the mechanical environment as a means of improving bone healing in the presence of bone morphogenetic protein (BMP)-2. Although the influence of mechanical forces on the healing of fractures is well established, no previous studies, to our knowledge, have described their influence on the healing of large segmental defects. We hypothesized that bone-healing would be improved by initial, low-stiffness fixation of the defect, followed by high-stiffness fixation during the healing process. We call this reverse dynamization. Methods A rat model of a critical-sized femoral defect was used. External fixators were constructed to provide different degrees of stiffness and, importantly, the ability to change stiffness during the healing process in vivo. Healing of the critical-sized defects was initiated by the implantation of 11 mg of recombinant human BMP (rhBMP)-2 on a collagen sponge. Groups of rats receiving BMP-2 were allowed to heal with low, medium, and high-stiffness fixators, as well as under conditions of reverse dynamization, in which the stiffness was changed from low to high at two weeks. Healing was assessed at eight weeks with use of radiographs, histological analysis, microcomputed tomography, dual x-ray absorptiometry, and mechanical testing. Results Under constant stiffness, the low-stiffness fixator produced the best healing after eight weeks. However, reverse dynamization provided considerable improvement, resulting in a marked acceleration of the healing process by all of the criteria of this study. The histological data suggest that this was the result of intramembranous, rather than endochondral, ossification. Conclusions Reverse dynamization accelerated healing in the presence of BMP-2 in the rat femur and is worthy of further investigation as a means of improving the healing of large segmental bone defects. Clinical Relevance These data provide the basis of a novel, simple, and inexpensive way to improve the healing of critical-sized defects in long bones. Reverse dynamization may also be applicable to other circumstances in which bonehealing is problematic.
Resumo:
Objective To determine whether locally applied tobramycin influences the ability of recombinant human bone morphogenetic protein 2 (rhBMP-2) to heal a segmental defect in the rat femur. Methods The influence of tobramycin on the osteogenic differentiation of mesenchymal stem cells was first evaluated in vitro. For the subsequent, in vivo experiments, a 5-mm segmental defect was created in the right femur of each of 25 Sprague-Dawley rats and stabilized with an external fixator and four Kirschner wires. Rats were divided in four groups: empty control, tobramycin (11 mg)/absorbable collagen sponge, rhBMP-2 (11 μg)/absorbable collagen sponge, and rhBMP-2/absorbable collagen sponge with tobramycin. Bone healing was monitored by radiography at 3 and 8 weeks. Animals were euthanized at 8 weeks and the properties of the defect were compared with the intact contralateral femur. Bone formation in the defect region was assessed by dual-energy x-ray absorptiometry, microcomputed tomography, histology, and mechanical testing. Results Tobramycin exerted a dose-dependent inhibition of alkaline phosphatase induction and calcium deposition by mesenchymal stem cells cultured under osteogenic conditions. The inhibition was reversed in the presence of 500 ng/mL of rhBMP-2. Segmental defects in the rat femora failed to heal in the absence of rhBMP-2. Tobramycin exerted no inhibitory effects on the ability of rhBMP-2 to heal these defects and increased the bone area of the defects treated with rhBMP-2. Data obtained from all other parameters of healing, including dual-energy x-ray absorptiometry, microcomputed tomography, histology, and mechanical testing, were unaffected by tobramycin. Conclusions Although our in vitro results suggested that tobramycin inhibits the osteogenic differentiation of mesenchymal stem cells, this could be overcome by rhBMP-2. Tobramycin did not impair the ability of rhBMP-2 to heal critical-sized femoral defects in rats. Indeed, bone area was increased by nearly 20% in the rhBMP-2 group treated with tobramycin. This study shows that locally applied tobramycin can be used in conjunction with rhBMP-2 to enhance bone formation at fracture sites.
Resumo:
Background Adolescent Idiopathic Scoliosis is the most common type of spinal deformity whose aetiology remains unclear. Studies suggest that gravitational forces in the standing position play an important role in scoliosis progression, therefore anthropometric data are required to develop biomechanical models of the deformity. Few studies have analysed the trunk by vertebral level and none have performed investigations of the scoliotic trunk. The aim of this study was to determine the centroid, thickness, volume and estimated mass, for sections of the trunk in Adolescent Idiopathic Scoliosis patients. Methods Existing low-dose Computed Tomography scans were used to estimate vertebral level-by-level torso masses for 20 female Adolescent Idiopathic Scoliosis patients. ImageJ processing software was used to analyse the Computed Tomography images and enable estimation of the segmental torso mass corresponding to each vertebral level. Findings The patients’ mean age was 15.0 (SD 2.7) years with mean major Cobb Angle of 52° (SD 5.9) and mean patient weight of 58.2 (SD 11.6) kg. The magnitude of torso segment mass corresponding to each vertebral level increased by 150% from 0.6kg at T1 to 1.5kg at L5. Similarly, the segmental thickness corresponding to each vertebral level from T1-L5 increased inferiorly from a mean 18.5 (SD 2.2) mm at T1 to 32.8 (SD 3.4) mm at L5. The mean total trunk mass, as a percentage of total body mass, was 27.8 (SD 0.5) % which was close to values reported in previous literature. Interpretation This study provides new anthropometric reference data on segmental (vertebral level-by-level) torso mass in Adolescent Idiopathic Scoliosis patients, useful for biomechanical models of scoliosis progression and treatment.
Resumo:
Introduction Calculating segmental torso masses in Adolescent Idiopathic Scoliosis (AIS) patients allows the gravitational loading on the scoliotic spine during relaxed standing to be estimated. Methods Low dose CT data was used to calculate vertebral level-by-level torso masses and spinal joint torques for 20 female AIS patients (mean age 15.0 ± 2.7 years, mean Cobb angle 53 ± 7.1°). ImageJ software (v1.45 NIH USA) was used to threshold the T1 to L5 CT images and calculate the segmental torso volume and mass for each vertebral level. Masses for the head, neck and arms were taken from published data. Intervertebral joint torques in the coronal and sagittal planes at each vertebral level were found from the position of the centroid of the segment masses relative to the joint centres (assumed to be at the centre of the intervertebral disc. The joint torque at each level was found by summing torque contributions for all segments above that joint. Results Segmental torso mass increased from 0.6kg at T1 to 1.5kg at L5. The coronal plane joint torques due to gravity were 5-7Nm at the apex of the curve; sagittal torques were 3-5.4Nm. Conclusion CT scans were in the supine position and curve magnitudes are known to be smaller than those in standing. Hence, this study has shown that gravity produces joint torques potentially of higher than 7Nm in the coronal plane and 5Nm in the sagittal plane during relaxed standing in scoliosis patients. The magnitude of these torques may help to explain the mechanics of AIS progression and the mechanics of bracing. This new data on torso segmental mass in AIS patients will assist biomechanical models of scoliosis.
Resumo:
This research treated the response of underground transportation tunnels to surface blast loads using advanced computer simulation techniques. The influences of important parameters, such as tunnel material, geometrical configuration of segments and surrounding soil were investigated. The findings of this research offer significant new information on the blast performance of underground tunnels and will contribute towards future civil engineering applications.
Resumo:
Flexor digitorum longus transfer and medial displacement alcaneal osteotomy is a wellrecognised form of treatment or stage II posterior tibial tendon dysfunction. Although excellent short- and medium-term results have been reported, the long-term outcome is unknown. We reviewed the clinical outcome of 31 patients with a symptomatic flexible flatfoot deformity who underwent this procedure between 1994 and 1996. There were 21 women and ten men with a mean age of 54.3 years (42 to 70). The mean follow-up was 15.2 years (11.4 to 16.5). All scores improved significantly (p < 0.001). The mean American Orthopedic Foot and Ankle Society (AOFAS) score improved from 48.4 pre-operatively to 90.3 (54 to 100) at the final follow-up. The mean pain component improved from 12.3 to 35.2 (20 to 40). The mean function score improved from 35.2 to 45.6 (30 to 50). The mean visual analogue score for pain improved from 7.3 to 1.3 (0 to 6). The mean Short Form-36 physical component score was 40.6 (SD 8.9), and this showed a significant correlation with the mean AOFAS score (r = 0.68, p = 0.005). A total of 27 patients (87%) were pain free and functioning well at the final follow-up. We believe that flexor digitorum longus transfer and calcaneal osteotomy provides long-term pain relief and satisfactory function in the treatment of stage II posterior tibial tendon dysfunction.
Resumo:
Abstract: Over the years bioelectrical impedance assay (BIA) has gained popularity in the assessment of body composition. However, equations for the prediction of whole body composition use whole body BIA. This study attempts to evaluate the usefulness of segmental BIA in the assessment of whole body composition. A cross sectional descriptive study was conducted at the Professorial Paediatric Unit of Lady Ridgeway Hospital, Colombo, involving 259 (M/F:144/115) 5 to 15 year old healthy children. The height, weight, total and segmental BIA were measured and impedance indices and specific resistivity for the whole body and segments were calculated. Segmental BIA indices showed a significant association with whole body composition measures assessed by total body water (TBW) using the isotope dilution method (D2O). Impedance index was better related to TBW and fat free mass (FFM), while specific resistivity was better related to the fat mass of the body. Regression equations with different combinations of variables showed high predictability of whole body composition. Results of this study showed that segmental BIA can be used as an alternative approach to predict the whole body composition in Sri Lankan children.
Resumo:
Background Today, finding an ideal biomaterial to treat the large bone defects, delayed unions and non-unions remains a challenge for orthopaedic surgeions and researchers. Several studies have been carried out on the subject of bone regeneration, each having its own advantages. The present study has been designed in vivo to evaluate the effects of cellular auto-transplantation of tail vertebrae on healing of experimental critical bone defect in a dog model. Methods Six indigenous breeds of dog with 32 ± 3.6 kg average weight from both sexes (5 males and 1 female) received bilateral critical-sized ulnar segmental defects. After determining the health condition, divided to 2 groups: The Group I were kept as control I (n = 1) while in Group II (experimental group; n = 5) bioactive bone implants were inserted. The defects were implanted with either autogeneic coccygeal bone grafts in dogs with 3-4 cm diaphyseal defects in the ulna. Defects were stabilized with internal plate fixation, and the control defects were not stabilized. Animals were euthanized at 16 weeks and analyzed by histopathology. Results Histological evaluation of this new bone at sixteen weeks postoperatively revealed primarily lamellar bone, with the formation of new cortices and normal-appearing marrow elements. And also reformation cortical compartment and reconstitution of marrow space were observed at the graft-host interface together with graft resorption and necrosis responses. Finally, our data were consistent with the osteoconducting function of the tail autograft. Conclusions Our results suggested that the tail vertebrae autograft seemed to be a new source of autogenous cortical bone in order to supporting segmental long bone defects in dogs. Furthermore, cellular autotransplantation was found to be a successful replacement for the tail vertebrae allograft bone at 3-4 cm segmental defects in the canine mid- ulna. Clinical application using graft expanders or bone autotransplantation should be used carefully and requires further investigation.
Resumo:
Purpose We sought to analyse clinical and oncological outcomes of patients after guided resection of periacetabular tumours and endoprosthetic reconstruction of the remaining defect. Methods From 1988 to 2008, we treated 56 consecutive patients (mean age 52.5 years, 41.1 % women). Patients were followed up either until death or February 2011 (mean follow up 5.5 years, range 0.1–22.5, standard deviation ± 5.3). Kaplan–Meier analysis was used to estimate survival rates. Results Disease-specific survival was 59.9 % at five years and 49.7 % at ten and 20 years, respectively. Wide resection margins were achieved in 38 patients, whereas 11 patients underwent marginal and seven intralesional resection. Survival was significantly better in patients with wide or marginal resection than in patients with intralesional resection (p = 0.022). Survival for patients with secondary tumours was significantly worse than for patients with primary tumours (p = 0.003). In 29 patients (51.8 %), at least one reoperation was necessary, resulting in a revision-free survival of 50.5 % at five years, 41.1 % at ten years and 30.6 % at 20 years. Implant survival was 77.0 % at five years, 68.6 % at ten years and 51.8 % at 20 years. A total of 35 patients (62.5 %) experienced one or more complications after surgery. Ten of 56 patients (17.9 %) experienced local recurrence after a mean of 8.9 months. The mean postoperative Musculoskeletal Tumor Society (MSTS) score was 18.1 (60.1 %). Conclusion The surgical approach assessed in this study simplifies the process of tumour resection and prosthesis implantation and leads to acceptable clinical and oncological outcomes.
Resumo:
Background Segmental biomechanics of the scoliotic spine are important since the overall spinal deformity is comprised of the cumulative coronal and axial rotations of individual joints. This study investigates the coronal plane segmental biomechanics for adolescent idiopathic scoliosis patients in response to physiologically relevant axial compression. Methods Individual spinal joint compliance in the coronal plane was measured for a series of 15 idiopathic scoliosis patients using axially loaded magnetic resonance imaging. Each patient was first imaged in the supine position with no axial load, and then again following application of an axial compressive load. Coronal plane disc wedge angles in the unloaded and loaded configurations were measured. Joint moments exerted by the axial compressive load were used to derive estimates of individual joint compliance. Findings The mean standing major Cobb angle for this patient series was 46°. Mean intra-observer measurement error for endplate inclination was 1.6°. Following loading, initially highly wedged discs demonstrated a smaller change in wedge angle, than less wedged discs for certain spinal levels (+ 2,+1,− 2 relative to the apex, (p < 0.05)). Highly wedged discs were observed near the apex of the curve, which corresponded to lower joint compliance in the apical region. Interpretation While individual patients exhibit substantial variability in disc wedge angles and joint compliance, overall there is a pattern of increased disc wedging near the curve apex, and reduced joint compliance in this region. Approaches such as this can provide valuable biomechanical data on in vivo spinal biomechanics of the scoliotic spine, for analysis of deformity progression and surgical planning.