27 resultados para Seed predation
Resumo:
Background Accumulated biological research outcomes show that biological functions do not depend on individual genes, but on complex gene networks. Microarray data are widely used to cluster genes according to their expression levels across experimental conditions. However, functionally related genes generally do not show coherent expression across all conditions since any given cellular process is active only under a subset of conditions. Biclustering finds gene clusters that have similar expression levels across a subset of conditions. This paper proposes a seed-based algorithm that identifies coherent genes in an exhaustive, but efficient manner. Methods In order to find the biclusters in a gene expression dataset, we exhaustively select combinations of genes and conditions as seeds to create candidate bicluster tables. The tables have two columns: (a) a gene set, and (b) the conditions on which the gene set have dissimilar expression levels to the seed. First, the genes with less than the maximum number of dissimilar conditions are identified and a table of these genes is created. Second, the rows that have the same dissimilar conditions are grouped together. Third, the table is sorted in ascending order based on the number of dissimilar conditions. Finally, beginning with the first row of the table, a test is run repeatedly to determine whether the cardinality of the gene set in the row is greater than the minimum threshold number of genes in a bicluster. If so, a bicluster is outputted and the corresponding row is removed from the table. Repeating this process, all biclusters in the table are systematically identified until the table becomes empty. Conclusions This paper presents a novel biclustering algorithm for the identification of additive biclusters. Since it involves exhaustively testing combinations of genes and conditions, the additive biclusters can be found more readily.
Resumo:
The Beauty Leaf tree (Calophyllum inophyllum) is a potential source of non-edible vegetable oil for producing future generation biodiesel because of its ability to grow in a wide range of climate conditions, easy cultivation, high fruit production rate, and the high oil content in the seed. This plant naturally occurs in the coastal areas of Queensland and the Northern Territory in Australia, and is also widespread in south-east Asia, India and Sri Lanka. Although Beauty Leaf is traditionally used as a source of timber and orientation plant, its potential as a source of second generation biodiesel is yet to be exploited. In this study, the extraction process from the Beauty Leaf oil seed has been optimised in terms of seed preparation, moisture content and oil extraction methods. The two methods that have been considered to extract oil from the seed kernel are mechanical oil extraction using an electric powered screw press, and chemical oil extraction using n-hexane as an oil solvent. The study found that seed preparation has a significant impact on oil yields, especially in the screw press extraction method. Kernels prepared to 15% moisture content provided the highest oil yields for both extraction methods. Mechanical extraction using the screw press can produce oil from correctly prepared product at a low cost, however overall this method is ineffective with relatively low oil yields. Chemical extraction was found to be a very effective method for oil extraction for its consistence performance and high oil yield, but cost of production was relatively higher due to the high cost of solvent. However, a solvent recycle system can be implemented to reduce the production cost of Beauty Leaf biodiesel. The findings of this study are expected to serve as the basis from which industrial scale biodiesel production from Beauty Leaf can be made.
Resumo:
This paper reports on the outcomes of an ICT enabled social sustainability project “Green Lanka1” trialled in the Wilgamuwa village, which is situated in the Dambulla district of Sri Lanka. The main goals of the project were focused towards the provision of information about market prices, transportation options, agricultural decision support and modern agriculture practices of the farmer communities to improve their livelihood with the effective use of technologies. The project used Web and Mobile (SMS) enabled systems. The Green Lanka project was sponsored by the Information Communication Technology Agency (ICTA) of Sri Lanka under the Institutional Capacity Building Programme (ICBP) grant scheme which was sponsored by the World Bank. Six hundred families in Wilgamuwa village participated in the project activities. The project was designed, executed and studied through an Action Research approach. The lessons learned through the project activities provide an important understanding of the complex interaction between different stakeholders in the process of implementation of ICT enabled solutions within digitally divided societies. The paper analyses the processes used to reduce the resistance to change and improved involvement of farmer communities in ICT enabled projects. It also analyses the interaction between stakeholders involved in design and implementation of the project activities to improve the chances of project success.
Resumo:
In the past decade we have come to appreciate that the microenvironment has the potential for major influence on the cancer cell. An extreme case for this occurs when the cancer cell changes its environment in the context of metastasis, where this may in part underpin the altered biology of cells in metasases. Increasing evidence suggests that changes in the cellular microenvironment contribute to tumourigenesis and metastasis, but the molecular basis of these alterations is not well understood. Reactive stroma provides oncogenic signals to facilitate tumourigenesis and metastasis—co-implantation of normal human epithelial cells in vivo with irradiated, carcinogen treated, or cancer derived fibroblasts leads to the enhancement or formation of malignant tumours.
Resumo:
A$65 million pledge by Nicola and Andrew Forrest to all five West Australian univerisities alters the philanthropy landscape in Australia. The Forrest' donation comes less than a year after Louise and Graham Tuckwell's A$50 million donation to Australian national University.
Resumo:
High germination rates and rapid germination behavior in response to different environmental cues are traits that may be associated with invasiveness. Cat’s claw creeper (Dolichandra unguis-cati (L.) Lohmann (syn. Macfadyena unguis-cati (L.) Gentry), a Weed of National Significance has two forms, a long-pod (LP) form and a short-pod (SP) from. The LP form occurs in only a few localities in southeast Queensland while the SP form is widely distributed in Queensland and New South Wales. The aims of this investigation were: to evaluate whether there are significant differences in germination traits between the two forms of cat’s claw creeper; and if there are any significant differences, to find out whether the differences in germination can be related to prevalence and invasiveness levels for the two forms. Long pod and short pod seeds collected in 2009, 2010, 2011, 2012 and 2013 from various localities in Qld were germinated in growth chambers in early 2013. The growth chambers were set to 10/20 ºC, 15/25 ºC and 20/30 ºC temperature cycles. Seeds from 2009-2012 of either form did not germinate, while for the fresh seeds (2013), SP exhibited significantly higher total germination percentage and rates than LP. Assuming that the two forms were introduced in Australia at around the same period, these results could explain why SP is widely distributed (and therefore more invasive) in Qld and NSW while LP is only confined to a few localities in southeast Qld.
Resumo:
The foraging behavior of greater short-nosed fruit bats (Cynopterus sphinx) on wild banana (Musa acuminata) and subsequent dispersal of seeds were studied in the Tropical Rainforest Conservation Area, Xishuangbanna Tropical Botanical Garden, Yunnan province, by direct observation of marked fruits, mist netting, and seed collection. The mean number (± SE) of individual C. sphinx captured by mist net were 2.2 ± 0.33/day and 1.4 ± 0.32/day in the rainy season (September to October) and dry season (November to December), respectively; the difference was not significant. The number of seed pellets expelled was 9.0 ± 1.12/day and 7.2 ± 1.37/day in the rainy and dry seasons respectively; again the difference was not significant. The removal curves for marked fruit were similar for 10 focal trees. Fruits were consumed heavily within two weeks after ripening and all the marked fruit were removed within one month. The difference in seed dispersal was significant between different feeding roosts indicating that patterns of seed dispersal may not be uniform. We found the seeds of M. acuminata can be dispersed by C. sphinx to a distance of about 200 m, and C. sphinx can be considered as an effective seed disperser of M. acuminata.
Resumo:
Female greater wax moths Galleria mellonella display by wing fanning in response to bursts of ultrasonic calls produced by males. The temporal and spectral characteristics of these calls show some similarities with the echolocation calls of bats that emit frequency-modulated (FM) signals. Female G. mellonella therefore need to distinguish between the attractive signals of male conspecifics, which may lead to mating opportunities, and similar sounds made by predatory bats. We therefore predicted that (1) females would display in response to playbacks of male calls; (2) females would not display in response to playbacks of the calls of echolocating bats (we used the calls of Daubenton's bat Myotis daubentonii as representative of a typical FM echolocating bat); and (3) when presented with male calls and bat calls during the same time block, females would display more when perceived predation risk was lower. We manipulated predation risk in two ways. First, we varied the intensity of bat calls to represent a nearby (high risk) or distant (low risk) bat. Second, we played back calls of bats searching for prey (low risk) and attacking prey (high risk). All predictions were supported, suggesting that female G. mellonella are able to distinguish conspecific male mating calls from bat calls, and that they modify display rate in relation to predation risk. The mechanism (s) by which the moths separate the calls of bat and moth must involve temporal cues. Bat and moth signals differ considerably in duration, and differences in duration could be encoded by the moth's nervous system and used in discrimination.
Resumo:
Forestry by-products have potential applications as components of wood composites. Replacement of conventional pine radiata wood-fibres by the fibres from the seeds (SCF) of the by-products, require determining and optimizing the mechanical properties to producing highest quality products. Response to mechanical stress is an important aspect to consider towards partial or full replacement of the wood-fibres by SCFs. In the present study the critical strain energy release rate, and the fracture toughness are derived from the published data. The present work uses rules of mixture to derive the mechanical and the physical properties of the SCF and relates the performance of the composites of the wood-fibres and the SCF to chemical composition, dispersion, weight and Vf of the fibres. We have also derived the Gc, the critical strain energy release rate, KIC, the fracture toughness of the composites.
Resumo:
"It could easily provide the back-drop for a James Bond movie. Deep inside a mountain near the North Pole, down a fortified tunnel, and behind airlocked doors in a vault frozen to -18 degrees Celsius, scientists are squirreling away millions of seed samples. The samples constitute the very foundation of agriculture, the biological diversity needed so the world's major food crops can adapt to the next pest or disease, or to climate change. It's little wonder that the Svalbard Global Seed Vault has captured the public's imagination more than almost any agricultural topic in recent years. Popular press reports about the ‘Doomsday Vault,’ however, typically mask the complexity of the endeavor and, if anything, underestimate its practical utility." Cary Fowler This chapter considers the use of seed banks to address concerns about intellectual property, climate change and food security. It has a number of themes. First of all, it is interested in the use of ‘Big Science’ projects to address pressing global scientific concerns and Millennium Development Goals. Second, it highlights the increasing use of banks as a means of managing both property and intellectual property across a wide range of fields of agriculture and biotechnology. Third, it considers the linkage of intellectual property, access to genetic resources and benefit sharing. There are a variety of positions in this debate. Some see requirements in respect of access to genetic resources and benefit sharing as an inconvenient burden for science and commerce. Others defend access to genetic resources and benefit sharing as meaningful and productive. Those inclined to somewhat more conspiratorial views suggest that access to genetic resources and benefit sharing are a ruse to facilitate biopiracy. This chapter has a number of components. Section I focuses upon the Consultative Group on International Agricultural Research (CGIAR) network – often raised as a model for Climate Innovation Centres. Section II considers the Svalbard Global Seed Vault – the so-called Doomsday Vault. After a consideration of the World Summit on Food Security in 2009, it is concluded in this chapter that any future international agreement on climate change needs to address intellectual property, plant genetic resources and food security.
Resumo:
This chapter considers the Public Patent Foundation as a novel institution in the patent framework. It contends that such a model can play a productive role in challenging the validity of high-profile patents; working as an amicus curiae in significant court cases; and also promoting patent law reform. However, there are limits to the ‘patent-busting’ of the Foundation. The not-for-profit legal services organization has only had the time and resources to challenge a number of noteworthy patents. Other jurisdictions – such as Australia – lack such public-spirited "patent-busting" entities. This chapter considers a number of key disputes involving the Public Patent Foundation. Part I examines the role of the Public Patent Foundation in the landmark dispute over Myriad Genetics’ patents in respect of breast cancer and ovarian cancer. Part II considers the role of the Public Patent Foundation in litigation between organic farmers and Monsanto. Part III examines the role of the Public Patent Foundation in larger debates about patent law reform in the United States – particularly looking at the Leahy-Smith America Invents Act 2011 (US). The conclusion contends that the patent-busting model of the Public Patent Foundation should be emulated in respect of other technological fields, and other jurisdictions – such as Australia. The initiative could also be productively applied to other forms of intellectual property – such as trade mark law, designs law, plant breeders’ rights, plant breeders’ rights, and access to genetic resources.
Resumo:
This work reports the effect of seed nanoparticle size and concentration effects on heterogeneous crystal nucleation and growth in colloidal suspensions. We examined these effects in the Au nanoparticle-seeded growth of Au-ZnO hetero-nanocrystals under synthesis conditions that generate hexagonal, cone-shaped ZnO nanocrystals. It was observed that small (~ 4 nm) Au seed nanoparticles form one-to-one Au-ZnO hetero dimers and that Au nanoparticle seeds of this size can also act as crystallization ‘catalysts’ that readily promote the nucleation and growth of ZnO nanocrystals. Larger seed nanoparticles (~9 nm, ~ 11 nm) provided multiple, stable ZnO-nucleation sites, generating multi-crystalline hetero trimers, tetramers and oligomers.