369 resultados para Search problems
Resumo:
An increasing amount of people seek health advice on the web using search engines; this poses challenging problems for current search technologies. In this paper we report an initial study of the effectiveness of current search engines in retrieving relevant information for diagnostic medical circumlocutory queries, i.e., queries that are issued by people seeking information about their health condition using a description of the symptoms they observes (e.g. hives all over body) rather than the medical term (e.g. urticaria). This type of queries frequently happens when people are unfamiliar with a domain or language and they are common among health information seekers attempting to self-diagnose or self-treat themselves. Our analysis reveals that current search engines are not equipped to effectively satisfy such information needs; this can have potential harmful outcomes on people’s health. Our results advocate for more research in developing information retrieval methods to support such complex information needs.
Resumo:
Particle swarm optimization (PSO), a new population based algorithm, has recently been used on multi-robot systems. Although this algorithm is applied to solve many optimization problems as well as multi-robot systems, it has some drawbacks when it is applied on multi-robot search systems to find a target in a search space containing big static obstacles. One of these defects is premature convergence. This means that one of the properties of basic PSO is that when particles are spread in a search space, as time increases they tend to converge in a small area. This shortcoming is also evident on a multi-robot search system, particularly when there are big static obstacles in the search space that prevent the robots from finding the target easily; therefore, as time increases, based on this property they converge to a small area that may not contain the target and become entrapped in that area.Another shortcoming is that basic PSO cannot guarantee the global convergence of the algorithm. In other words, initially particles explore different areas, but in some cases they are not good at exploiting promising areas, which will increase the search time.This study proposes a method based on the particle swarm optimization (PSO) technique on a multi-robot system to find a target in a search space containing big static obstacles. This method is not only able to overcome the premature convergence problem but also establishes an efficient balance between exploration and exploitation and guarantees global convergence, reducing the search time by combining with a local search method, such as A-star.To validate the effectiveness and usefulness of algorithms,a simulation environment has been developed for conducting simulation-based experiments in different scenarios and for reporting experimental results. These experimental results have demonstrated that the proposed method is able to overcome the premature convergence problem and guarantee global convergence.
Resumo:
In this study we present a combinatorial optimization method based on particle swarm optimization and local search algorithm on the multi-robot search system. Under this method, in order to create a balance between exploration and exploitation and guarantee the global convergence, at each iteration step if the distance between target and the robot become less than specific measure then a local search algorithm is performed. The local search encourages the particle to explore the local region beyond to reach the target in lesser search time. Experimental results obtained in a simulated environment show that biological and sociological inspiration could be useful to meet the challenges of robotic applications that can be described as optimization problems.
Resumo:
Speculative property developers, criticised for building dog boxes and the slums of tomorrow, are generally hated by urban planners and the public alike. But the doors of state governments are seemingly always open to developers and their lobbyists. Politicians find it hard to say no to the demands of the development industry for concessions because of the contribution housing construction makes to the economic bottom line and because there is a need for well located housing. New supply is also seen as a solution to declining housing affordability. Classical economic theory however is too simplistic for housing supply. Instead, an offshoot of Game Theory - Market Design – not only offers greater insight into apartment supply but also can simultaneously address price, design and quality issues. New research reveals the most significant risk in residential development is settlement risk – when buyers fail to proceed with their purchase despite there being a pre-sale contract. At the point of settlement, the developer has expended all the project funds only to see forecast revenue evaporate. While new buyers may be found, this process is likely to strip the profitability out of the project. As the global financial crisis exposed, buyers are inclined to walk if property values slide. This settlement problem reflects a poor legal mechanism (the pre-sale contract), and a lack of incentive for truthfulness. A second problem is the search costs of finding buyers. At around 10% of project costs, pre-sales are more expensive to developers than finance. This is where Market Design comes in.
Resumo:
In the mining optimisation literature, most researchers focused on two strategic-level and tactical-level open-pit mine optimisation problems, which are respectively termed ultimate pit limit (UPIT) or constrained pit limit (CPIT). However, many researchers indicate that the substantial numbers of variables and constraints in real-world instances (e.g., with 50-1000 thousand blocks) make the CPIT’s mixed integer programming (MIP) model intractable for use. Thus, it becomes a considerable challenge to solve the large scale CPIT instances without relying on exact MIP optimiser as well as the complicated MIP relaxation/decomposition methods. To take this challenge, two new graph-based algorithms based on network flow graph and conjunctive graph theory are developed by taking advantage of problem properties. The performance of our proposed algorithms is validated by testing recent large scale benchmark UPIT and CPIT instances’ datasets of MineLib in 2013. In comparison to best known results from MineLib, it is shown that the proposed algorithms outperform other CPIT solution approaches existing in the literature. The proposed graph-based algorithms leads to a more competent mine scheduling optimisation expert system because the third-party MIP optimiser is no longer indispensable and random neighbourhood search is not necessary.
Resumo:
Despite compulsory mathematics throughout primary and junior secondary schooling, many schools across Australia continue in their struggle to achieve satisfactory numeracy levels. Numeracy is not a distinct subject in school curriculum, and in fact appears as a general capability in the Australian Curriculum, wherein all teachers across all curriculum areas are responsible for numeracy. This general capability approach confuses what numeracy should look like, especially when compared to the structure of numeracy as defined on standardised national tests. In seeking to define numeracy, schools tend to look at past NAPLAN papers, and in doing so, we do not find examples drawn from the various aspects of school curriculum. What we find are more traditional forms of mathematical worded problems.