244 resultados para Search Engine
Resumo:
For people with cognitive disabilities, technology is more often thought of as a support mechanism, rather than a source of division that may require intervention to equalize access across the cognitive spectrum. This paper presents a first attempt at formalizing the digital gap created by the generalization of search engines. This was achieved through the development of a mapping of cognitive abilities required by users to execute low- level tasks during a standard Web search task. The mapping demonstrates how critical these abilities are to successfully use search engines with an adequate level of independence. It will lead to a set of design guidelines for search engine interfaces that will allow for the engagement of users of all abilities, and also, more importantly, in search algorithms such as query suggestion and measure of relevance (i.e. ranking).
Resumo:
The legality of the operation of Google’s search engine, and its liability as an Internet intermediary, has been tested in various jurisdictions on various grounds. In Australia, there was an ultimately unsuccessful case against Google under the Australian Consumer Law relating to how it presents results from its search engine. Despite this failed claim, several complex issues were not adequately addressed in the case including whether Google sufficiently distinguishes between the different parts of its search results page, so as not to mislead or deceive consumers. This article seeks to address this question of consumer confusion by drawing on empirical survey evidence of Australian consumers’ understanding of Google’s search results layout. This evidence, the first of its kind in Australia, indicates some level of consumer confusion. The implications for future legal proceedings in against Google in Australia and in other jurisdictions are discussed.
Resumo:
Traditional information retrieval (IR) systems respond to user queries with ranked lists of relevant documents. The separation of content and structure in XML documents allows individual XML elements to be selected in isolation. Thus, users expect XML-IR systems to return highly relevant results that are more precise than entire documents. In this paper we describe the implementation of a search engine for XML document collections. The system is keyword based and is built upon an XML inverted file system. We describe the approach that was adopted to meet the requirements of Content Only (CO) and Vague Content and Structure (VCAS) queries in INEX 2004.
Resumo:
Peer to peer systems have been widely used in the internet. However, most of the peer to peer information systems are still missing some of the important features, for example cross-language IR (Information Retrieval) and collection selection / fusion features. Cross-language IR is the state-of-art research area in IR research community. It has not been used in any real world IR systems yet. Cross-language IR has the ability to issue a query in one language and receive documents in other languages. In typical peer to peer environment, users are from multiple countries. Their collections are definitely in multiple languages. Cross-language IR can help users to find documents more easily. E.g. many Chinese researchers will search research papers in both Chinese and English. With Cross-language IR, they can do one query in Chinese and get documents in two languages. The Out Of Vocabulary (OOV) problem is one of the key research areas in crosslanguage information retrieval. In recent years, web mining was shown to be one of the effective approaches to solving this problem. However, how to extract Multiword Lexical Units (MLUs) from the web content and how to select the correct translations from the extracted candidate MLUs are still two difficult problems in web mining based automated translation approaches. Discovering resource descriptions and merging results obtained from remote search engines are two key issues in distributed information retrieval studies. In uncooperative environments, query-based sampling and normalized-score based merging strategies are well-known approaches to solve such problems. However, such approaches only consider the content of the remote database but do not consider the retrieval performance of the remote search engine. This thesis presents research on building a peer to peer IR system with crosslanguage IR and advance collection profiling technique for fusion features. Particularly, this thesis first presents a new Chinese term measurement and new Chinese MLU extraction process that works well on small corpora. An approach to selection of MLUs in a more accurate manner is also presented. After that, this thesis proposes a collection profiling strategy which can discover not only collection content but also retrieval performance of the remote search engine. Based on collection profiling, a web-based query classification method and two collection fusion approaches are developed and presented in this thesis. Our experiments show that the proposed strategies are effective in merging results in uncooperative peer to peer environments. Here, an uncooperative environment is defined as each peer in the system is autonomous. Peer like to share documents but they do not share collection statistics. This environment is a typical peer to peer IR environment. Finally, all those approaches are grouped together to build up a secure peer to peer multilingual IR system that cooperates through X.509 and email system.
Resumo:
Computational biology increasingly demands the sharing of sophisticated data and annotations between research groups. Web 2.0 style sharing and publication requires that biological systems be described in well-defined, yet flexible and extensible formats which enhance exchange and re-use. In contrast to many of the standards for exchange in the genomic sciences, descriptions of biological sequences show a great diversity in format and function, impeding the definition and exchange of sequence patterns. In this presentation, we introduce BioPatML, an XML-based pattern description language that supports a wide range of patterns and allows the construction of complex, hierarchically structured patterns and pattern libraries. BioPatML unifies the diversity of current pattern description languages and fills a gap in the set of XML-based description languages for biological systems. We discuss the structure and elements of the language, and demonstrate its advantages on a series of applications, showing lightweight integration between the BioPatML parser and search engine, and the SilverGene genome browser. We conclude by describing our site to enable large scale pattern sharing, and our efforts to seed this repository.
Resumo:
This paper reports findings from a study investigating the effect of integrating sponsored and nonsponsored search engine links into a single web listing. The premise underlying this research is that web searchers are chiefly interested in relevant results. Given the reported negative bias that web searchers have concerning sponsored links, separate listings may be a disservice to web searchers as it might not direct them to relevant websites. Some web meta-search engines integrate sponsored and nonsponsored links into a single listing. Using a web search engine log of over 7 million interactions from hundreds of thousands of users from a major web meta-search engine, we analysed the click-through patterns for both sponsored and nonsponsored links. We also classified web queries as informational, navigational and transactional based on the expected type of content and analysed the click-through patterns of each classification. The findings show that for more than 35% of queries, there are no clicks on any result. More than 80% of web queries are informational in nature and approximately 10% are transactional, and 10% navigational. Sponsored links account for approximately 15% of all clicks. Integrating sponsored and nonsponsored links does not appear to increase the clicks on sponsored listings. We discuss how these research results could enhance future sponsored search platforms.
Resumo:
This paper investigates self–Googling through the monitoring of search engine activities of users and adds to the few quantitative studies on this topic already in existence. We explore this phenomenon by answering the following questions: To what extent is the self–Googling visible in the usage of search engines; is any significant difference measurable between queries related to self–Googling and generic search queries; to what extent do self–Googling search requests match the selected personalised Web pages? To address these questions we explore the theory of narcissism in order to help define self–Googling and present the results from a 14–month online experiment using Google search engine usage data.
Resumo:
Intuitively, any `bag of words' approach in IR should benefit from taking term dependencies into account. Unfortunately, for years the results of exploiting such dependencies have been mixed or inconclusive. To improve the situation, this paper shows how the natural language properties of the target documents can be used to transform and enrich the term dependencies to more useful statistics. This is done in three steps. The term co-occurrence statistics of queries and documents are each represented by a Markov chain. The paper proves that such a chain is ergodic, and therefore its asymptotic behavior is unique, stationary, and independent of the initial state. Next, the stationary distribution is taken to model queries and documents, rather than their initial distri- butions. Finally, ranking is achieved following the customary language modeling paradigm. The main contribution of this paper is to argue why the asymptotic behavior of the document model is a better representation then just the document's initial distribution. A secondary contribution is to investigate the practical application of this representation in case the queries become increasingly verbose. In the experiments (based on Lemur's search engine substrate) the default query model was replaced by the stable distribution of the query. Just modeling the query this way already resulted in significant improvements over a standard language model baseline. The results were on a par or better than more sophisticated algorithms that use fine-tuned parameters or extensive training. Moreover, the more verbose the query, the more effective the approach seems to become.
Resumo:
Searching for multimedia is an important activity for users of Web search engines. Studying user's interactions with Web search engine multimedia buttons, including image, audio, and video, is important for the development of multimedia Web search systems. This article provides results from a Weblog analysis study of multimedia Web searching by Dogpile users in 2006. The study analyzes the (a) duration, size, and structure of Web search queries and sessions; (b) user demographics; (c) most popular multimedia Web searching terms; and (d) use of advanced Web search techniques including Boolean and natural language. The current study findings are compared with results from previous multimedia Web searching studies. The key findings are: (a) Since 1997, image search consistently is the dominant media type searched followed by audio and video; (b) multimedia search duration is still short (>50% of searching episodes are <1 min), using few search terms; (c) many multimedia searches are for information about people, especially in audio search; and (d) multimedia search has begun to shift from entertainment to other categories such as medical, sports, and technology (based on the most repeated terms). Implications for design of Web multimedia search engines are discussed.
Resumo:
The increasing diversity of the Internet has created a vast number of multilingual resources on the Web. A huge number of these documents are written in various languages other than English. Consequently, the demand for searching in non-English languages is growing exponentially. It is desirable that a search engine can search for information over collections of documents in other languages. This research investigates the techniques for developing high-quality Chinese information retrieval systems. A distinctive feature of Chinese text is that a Chinese document is a sequence of Chinese characters with no space or boundary between Chinese words. This feature makes Chinese information retrieval more difficult since a retrieved document which contains the query term as a sequence of Chinese characters may not be really relevant to the query since the query term (as a sequence Chinese characters) may not be a valid Chinese word in that documents. On the other hand, a document that is actually relevant may not be retrieved because it does not contain the query sequence but contains other relevant words. In this research, we propose two approaches to deal with the problems. In the first approach, we propose a hybrid Chinese information retrieval model by incorporating word-based techniques with the traditional character-based techniques. The aim of this approach is to investigate the influence of Chinese segmentation on the performance of Chinese information retrieval. Two ranking methods are proposed to rank retrieved documents based on the relevancy to the query calculated by combining character-based ranking and word-based ranking. Our experimental results show that Chinese segmentation can improve the performance of Chinese information retrieval, but the improvement is not significant if it incorporates only Chinese segmentation with the traditional character-based approach. In the second approach, we propose a novel query expansion method which applies text mining techniques in order to find the most relevant words to extend the query. Unlike most existing query expansion methods, which generally select the highly frequent indexing terms from the retrieved documents to expand the query. In our approach, we utilize text mining techniques to find patterns from the retrieved documents that highly correlate with the query term and then use the relevant words in the patterns to expand the original query. This research project develops and implements a Chinese information retrieval system for evaluating the proposed approaches. There are two stages in the experiments. The first stage is to investigate if high accuracy segmentation can make an improvement to Chinese information retrieval. In the second stage, a text mining based query expansion approach is implemented and a further experiment has been done to compare its performance with the standard Rocchio approach with the proposed text mining based query expansion method. The NTCIR5 Chinese collections are used in the experiments. The experiment results show that by incorporating the text mining based query expansion with the hybrid model, significant improvement has been achieved in both precision and recall assessments.
Resumo:
In this research, we aim to identify factors that significantly affect the clickthrough of Web searchers. Our underlying goal is determine more efficient methods to optimize the clickthrough rate. We devise a clickthrough metric for measuring customer satisfaction of search engine results using the number of links visited, number of queries a user submits, and rank of clicked links. We use a neural network to detect the significant influence of searching characteristics on future user clickthrough. Our results show that high occurrences of query reformulation, lengthy searching duration, longer query length, and the higher ranking of prior clicked links correlate positively with future clickthrough. We provide recommendations for leveraging these findings for improving the performance of search engine retrieval and result ranking, along with implications for search engine marketing
Resumo:
In this paper, we define and present a comprehensive classification of user intent for Web searching. The classification consists of three hierarchical levels of informational, navigational, and transactional intent. After deriving attributes of each, we then developed a software application that automatically classified queries using a Web search engine log of over a million and a half queries submitted by several hundred thousand users. Our findings show that more than 80% of Web queries are informational in nature, with about 10% each being navigational and transactional. In order to validate the accuracy of our algorithm, we manually coded 400 queries and compared the results from this manual classification to the results determined by the automated method. This comparison showed that the automatic classification has an accuracy of 74%. Of the remaining 25% of the queries, the user intent is vague or multi-faceted, pointing to the need for probabilistic classification. We discuss how search engines can use knowledge of user intent to provide more targeted and relevant results in Web searching.
Resumo:
Purpose – This paper aims to report findings from an exploratory study investigating the web interactions and technoliteracy of children in the early childhood years. Previous research has studied aspects of older children’s technoliteracy and web searching; however, few studies have analyzed web search data from children younger than six years of age. Design/methodology/approach – The study explored the Google web searching and technoliteracy of young children who are enrolled in a “preparatory classroom” or kindergarten (the year before young children begin compulsory schooling in Queensland, Australia). Young children were video- and audio-taped while conducting Google web searches in the classroom. The data were qualitatively analysed to understand the young children’s web search behaviour. Findings – The findings show that young children engage in complex web searches, including keyword searching and browsing, query formulation and reformulation, relevance judgments, successive searches, information multitasking and collaborative behaviours. The study results provide significant initial insights into young children’s web searching and technoliteracy. Practical implications – The use of web search engines by young children is an important research area with implications for educators and web technologies developers. Originality/value – This is the first study of young children’s interaction with a web search engine.
Resumo:
Experimental / pilot online journalistic publication. EUAustralia Online (www.euaustralia.com) is a pilot niche publication identifying and demonstrating dynamics of online journalism. The editor, an experienced and senior journalist and academic, specialist in European studies, commenced publication on 28.8.06 during one year’s “industry immersion” -- with media accreditation to the European Commission, Brussels. Reporting now is from Australia and from Europe on field trip exercises. Student editors participate making it partly a training operation. EUAustralia demonstrates adaptation of conventional, universal, “Western” liberal journalistic practices. Its first premise is to fill a knowledge gap in Australia about the European Union -- institutions, functions and directions. The second premise is to test the communications capacity of the online format, where the publication sets a strong standard of journalistic credibility – hence its transparency with sourcing or signposting of “commentary” or ”opinion”. EUAustralia uses modified, enhanced weblog software allowing for future allocation of closed pages to subscribers. An early exemplar of its kind, with modest upload rate (2010-13 average, 16 postings monthly), esteemed, it commands over 180000 site visits p.a. (half as unique visitors; AWB Statistics); strongly rated by search engines, see page one Googlr placements for “EU Australia”. Comment by the ISP (SeventhVision, Broadbeach, Queensland): “The site has good search engine recognition because seen as credible; can be used to generate revenue”. This journalistic exercise has been analysed in theoretical context twice, in published refereed conference proceedings (Communication and Media Policy Forum, Sydney; 2007, 2009).