50 resultados para SUPER-LATTICE
Resumo:
Uncooperative iris identification systems at a distance suffer from poor resolution of the captured iris images, which significantly degrades iris recognition performance. Superresolution techniques have been employed to enhance the resolution of iris images and improve the recognition performance. However, all existing super-resolution approaches proposed for the iris biometric super-resolve pixel intensity values. This paper considers transferring super-resolution of iris images from the intensity domain to the feature domain. By directly super-resolving only the features essential for recognition, and by incorporating domain specific information from iris models, improved recognition performance compared to pixel domain super-resolution can be achieved. This is the first paper to investigate the possibility of feature domain super-resolution for iris recognition, and experiments confirm the validity of the proposed approach.
Resumo:
Using six kinds of lattice types (4×4 ,5×5 , and6×6 square lattices;3×3×3 cubic lattice; and2+3+4+3+2 and4+5+6+5+4 triangular lattices), three different size alphabets (HP ,HNUP , and 20 letters), and two energy functions, the designability of proteinstructures is calculated based on random samplings of structures and common biased sampling (CBS) of proteinsequence space. Then three quantities stability (average energy gap),foldability, and partnum of the structure, which are defined to elucidate the designability, are calculated. The authors find that whatever the type of lattice, alphabet size, and energy function used, there will be an emergence of highly designable (preferred) structure. For all cases considered, the local interactions reduce degeneracy and make the designability higher. The designability is sensitive to the lattice type, alphabet size, energy function, and sampling method of the sequence space. Compared with the random sampling method, both the CBS and the Metropolis Monte Carlo sampling methods make the designability higher. The correlation coefficients between the designability, stability, and foldability are mostly larger than 0.5, which demonstrate that they have strong correlation relationship. But the correlation relationship between the designability and the partnum is not so strong because the partnum is independent of the energy. The results are useful in practical use of the designability principle, such as to predict the proteintertiary structure.
Resumo:
There are large uncertainties in the aerothermodynamic modelling of super-orbital re-entry which impact the design of spacecraft thermal protection systems (TPS). Aspects of the thermal environment of super-orbital re-entry flows can be simulated in the laboratory using arc- and plasma jet facilities and these devices are regularly used for TPS certification work [5]. Another laboratory device which is capable of simulating certain critical features of both the aero and thermal environment of super-orbital re-entry is the expansion tube, and three such facilities have been operating at the University of Queensland in recent years[10]. Despite some success, wind tunnel tests do not achieve full simulation, however, a virtually complete physical simulation of particular re-entry conditions can be obtained from dedicated flight testing, and the Apollo era FIRE II flight experiment [2] is the premier example which still forms an important benchmark for modern simulations. Dedicated super-orbital flight testing is generally considered too expensive today, and there is a reluctance to incorporate substantial instrumentation for aerothermal diagnostics into existing missions since it may compromise primary mission objectives. An alternative approach to on-board flight measurements, with demonstrated success particularly in the ‘Stardust’ sample return mission, is remote observation of spectral emissions from the capsule and shock layer [8]. JAXA’s ‘Hayabusa’ sample return capsule provides a recent super-orbital reentry example through which we illustrate contributions in three areas: (1) physical simulation of super-orbital re-entry conditions in the laboratory; (2) computational simulation of such flows; and (3) remote acquisition of optical emissions from a super-orbital re entry event.
Resumo:
Characteristics of surveillance video generally include low resolution and poor quality due to environmental, storage and processing limitations. It is extremely difficult for computers and human operators to identify individuals from these videos. To overcome this problem, super-resolution can be used in conjunction with an automated face recognition system to enhance the spatial resolution of video frames containing the subject and narrow down the number of manual verifications performed by the human operator by presenting a list of most likely candidates from the database. As the super-resolution reconstruction process is ill-posed, visual artifacts are often generated as a result. These artifacts can be visually distracting to humans and/or affect machine recognition algorithms. While it is intuitive that higher resolution should lead to improved recognition accuracy, the effects of super-resolution and such artifacts on face recognition performance have not been systematically studied. This paper aims to address this gap while illustrating that super-resolution allows more accurate identification of individuals from low-resolution surveillance footage. The proposed optical flow-based super-resolution method is benchmarked against Baker et al.’s hallucination and Schultz et al.’s super-resolution techniques on images from the Terrascope and XM2VTS databases. Ground truth and interpolated images were also tested to provide a baseline for comparison. Results show that a suitable super-resolution system can improve the discriminability of surveillance video and enhance face recognition accuracy. The experiments also show that Schultz et al.’s method fails when dealing surveillance footage due to its assumption of rigid objects in the scene. The hallucination and optical flow-based methods performed comparably, with the optical flow-based method producing less visually distracting artifacts that interfered with human recognition.
Resumo:
Knowledge based urban development (KBUD) is a new paradigm in urban planning tailoring to the era of knowledge economy. It aims mainly to assist a contemporary city to promote a more sustainable socio-spatial order. The paper reports on the investigation of KBUD initiative in Malaysia which is manifested through the establishment of a project called Multimedia Super Corridor (MSC). MSC Malaysia aims to attract knowledge workers and industries to invest and operate within the area by creating a world class urban corridor with state-of-the-art multimedia infrastructure, efficient transportation system and an attractive living environment. Based on documents analysis and interviews, this paper analyses the strategies, implementations, and achievements of KBUD initiative in Cyberjaya, being the leading intelligent city of the unique Malaysia’s KBUD project-MSC Malaysia. A critical evaluation is made to assess the achievements of MSC, by looking at the physical changes after about ten years since its official launching. The findings recommend some valuable lessons for other cities that strive to develop KBUD strategies, strengthen their sustainable socio-spatial policies, and seek a global recognition.
Resumo:
This article is an analysis and contextualisation of 'Super Vanitas' a video installation by Stephen Russell that was held at Boxcopy ARI, Brisbane. It discusses the significance of the painting 'Death of Marat' (J.L. David, 1793) to the work and describes the methodological processes that are revealed in the work.
Resumo:
The low resolution of images has been one of the major limitations in recognising humans from a distance using their biometric traits, such as face and iris. Superresolution has been employed to improve the resolution and the recognition performance simultaneously, however the majority of techniques employed operate in the pixel domain, such that the biometric feature vectors are extracted from a super-resolved input image. Feature-domain superresolution has been proposed for face and iris, and is shown to further improve recognition performance by capitalising on direct super-resolving the features which are used for recognition. However, current feature-domain superresolution approaches are limited to simple linear features such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), which are not the most discriminant features for biometrics. Gabor-based features have been shown to be one of the most discriminant features for biometrics including face and iris. This paper proposes a framework to conduct super-resolution in the non-linear Gabor feature domain to further improve the recognition performance of biometric systems. Experiments have confirmed the validity of the proposed approach, demonstrating superior performance to existing linear approaches for both face and iris biometrics.
Resumo:
Individual-based models describing the migration and proliferation of a population of cells frequently restrict the cells to a predefined lattice. An implicit assumption of this type of lattice based model is that a proliferative population will always eventually fill the lattice. Here we develop a new lattice-free individual-based model that incorporates cell-to-cell crowding effects. We also derive approximate mean-field descriptions for the lattice-free model in two special cases motivated by commonly used experimental setups. Lattice-free simulation results are compared to these mean-field descriptions and to a corresponding lattice-based model. Data from a proliferation experiment is used to estimate the parameters for the new model, including the cell proliferation rate, showing that the model fits the data well. An important aspect of the lattice-free model is that the confluent cell density is not predefined, as with lattice-based models, but an emergent model property. As a consequence of the more realistic, irregular configuration of cells in the lattice-free model, the population growth rate is much slower at high cell densities and the population cannot reach the same confluent density as an equivalent lattice-based model.
Resumo:
While researchers strive to improve automatic face recognition performance, the relationship between image resolution and face recognition performance has not received much attention. This relationship is examined systematically and a framework is developed such that results from super-resolution techniques can be compared. Three super-resolution techniques are compared with the Eigenface and Elastic Bunch Graph Matching face recognition engines. Parameter ranges over which these techniques provide better recognition performance than interpolated images is determined.
Resumo:
The time consuming and labour intensive task of identifying individuals in surveillance video is often challenged by poor resolution and the sheer volume of stored video. Faces or identifying marks such as tattoos are often too coarse for direct matching by machine or human vision. Object tracking and super-resolution can then be combined to facilitate the automated detection and enhancement of areas of interest. The object tracking process enables the automatic detection of people of interest, greatly reducing the amount of data for super-resolution. Smaller regions such as faces can also be tracked. A number of instances of such regions can then be utilized to obtain a super-resolved version for matching. Performance improvement from super-resolution is demonstrated using a face verification task. It is shown that there is a consistent improvement of approximately 7% in verification accuracy, using both Eigenface and Elastic Bunch Graph Matching approaches for automatic face verification, starting from faces with an eye to eye distance of 14 pixels. Visual improvement in image fidelity from super-resolved images over low-resolution and interpolated images is demonstrated on a small database. Current research and future directions in this area are also summarized.
Resumo:
This paper presents an image-based visual servoing system that was used to track the atmospheric Earth re-entry of Hayabusa. The primary aim of this ground based tracking platform was to record the emission spectrum radiating from the superheated gas of the shock layer and the surface of the heat shield during re-entry. To the author's knowledge, this is the first time that a visual servoing system has successfully tracked a super-orbital re-entry of a spacecraft and recorded its pectral signature. Furthermore, we improved the system by including a simplified dynamic model for feed-forward control and demonstrate improved tracking performance on the International Space Station (ISS). We present comparisons between simulation and experimental results on different target trajectories including tracking results from Hayabusa and ISS. The required performance for tracking both spacecraft is demanding when combined with a narrow field of view (FOV). We also briefly discuss the preliminary results obtained from the spectroscopy of the Hayabusa's heat shield during re-entry.
Resumo:
In 2012 the existing eight disciplines of Creative Industries Faculty, QUT combined with the School of Design (formerly a component of the Faculty of Built Environment and Engineering) to create a super faculty that includes the following disciplines: Architecture, Creative Writing & Literary Studies, Dance, Drama, Fashion, Film & Television, Industrial Design, Interior Design, Journalism, Media & Communication, Landscape Architecture, Music & Sound and Urban Design. The university’s research training unit AIRS (Advanced Information Retrieval Skills) is a systematic introduction to research level information literacies. It is currently being redesigned to reflect today’s new data intensive research environment and facilitate the capacity for life-long learning. Upon completion participants are expected to be able to: 1. Demonstrate an understanding of the theory of advanced search and evaluative strategies to efficiently yield appropriate resources to create original research. 2. Apply appropriate data management strategies to organise and utilize your information proficiently, ethically and legally. 3. Identify strategies to ensure best practice in the use of information sources, information technologies, information access tools and investigative methods. All Creative Industries Faculty research students must complete this unit into which CI Librarians teach discipline specific material. The library employs a team of research specific experts as well as Liaison Librarians for each faculty. Together they develop and deliver a generic research training program that provides researcher training in the following areas: Managing Research Data, QUT ePrints: New features for tracking your research impact, Tracking Research Impact, Research Students and the Library: Overview of Library Research Support Services, Technologies for Research Collaboration, Open Access Publishing, Greater Impact via Creative Commons Licence, CAMBIA - Navigating the patent literature, Uploading Publications to QUT ePrints Workshop, AIRS for supervisors, Finding Existing Research Data, Keeping up to date:Discovering and managing current awareness information and Getting Published. In 2011 Creative Industries initiated a new faculty specific research training program to promote capacity building for research within their Faculty, with workshops designed and developed with Faculty Research Leaders, The Office of Research and Liaison Librarians. “Show me the money” which assists staff to pursue alternative funding sources was one such session that was well attended and generated much discussion and interest. Drop in support sessions for ePrints, EndNote referencing software and Tracking Research Impact for the Creative Industries were also popular options on the menu. Liaison Librarians continue to provide one-on-one consultations with individual researchers as requested. This service assists Librarians greatly with getting to know and monitoring their researchers’ changing needs. The CI Faculty has enlisted two Research Leaders, one for each of the two Schools (Design and Media, Entertainment & Creative Arts) whose role it is to mentor newer research staff. Similarly within the CI library liaison team one librarian is assigned the role of Research Coordinator, whose responsibility it is to be the primary liaison with the Assistant Dean, Research and other key Faculty research managers and is the one most likely to attend Faculty committees and meetings relating to research support.
Resumo:
This paper focuses on the super/sub-synchronous operation of the doubly fed induction generator (DFIG) system. The impact of a damping controller on the different modes of operation for the DFIG based wind generation system is investigated. The co-ordinated tuning of the damping controller to enhance the damping of the oscillatory modes using bacteria foraging (BF) technique is presented. The results from eigenvalue analysis are presented to elucidate the effectiveness of the tuned damping controller in the DFIG system. The robustness issue of the damping controller is also investigated