193 resultados para SOLVENT TRANSFER
Resumo:
Knowledge has been recognised as an important organisational asset that increases in value when shared; the opposite to other organisational assets which decrease in value during their exploitation. Effective knowledge transfer in organisations helps to achieve and maintain competitive advantage and ultimately organisational success. So far, the research on knowledge transfer has focused on traditional (functional) organisations. Only recently has attention been directed towards knowledge transfer in projects. Existing research on project learning has recognised the need for knowledge transfer within and across projects in project-based organisations (PBOs). Most projects can provide valuable new knowledge from unexpected actions, approaches or problems experienced during the project phases. The aim of this paper is to demonstrate the impact of unique projects characteristics on knowledge transfer in PBO. This is accomplished through review of the literature and a series of interviews with senior project practitioners. The interviews complement the findings from the literature. Knowledge transfer in projects occurs by social communication and transfer of lessons learned where project management offices (PMOs) and project managers play significant roles in enhancing knowledge transfer and communication within the PBO and across projects. They act as connectors between projects and the PBO ‘hub’. Moreover, some project management processes naturally facilitate knowledge transfer across projects. On the other hand, PBOs face communication challenges due to unique and temporary characteristics of projects. The distance between projects and the lack or weakness of formal links across projects, create communication problems that impede knowledge transfer across projects. The main contribution of this paper is to demonstrate that both social communication and explicit informational channels play important role in inter-project knowledge transfer. Interviews also revealed the important role organisational culture play in knowledge transfer in PBOs.
Resumo:
This article reports an enhanced solvent casting/particulate (salt) leaching (SCPL) method developed for preparing three-dimensional porous polyurethane (PU) scaffolds for cardiac tissue engineering. The solvent for the preparation of the PU scaffolds was a mixture of dimethylformamide (DFM) and tetrahydrofuran (THF). The enhanced method involved the combination of a conventional SCPL method and a step of centrifugation, with the centrifugation being employed to improve the pore uniformity and the pore interconnectivity of scaffolds. Highly porous three-dimensional scaffolds with a well interconnected porous structure could be achieved at the polymer solution concentration of up to 20% by air or vacuum drying to remove the solvent. When the salt particle sizes of 212-295, 295-425, or 425-531 µm and a 15% w/v polymer solution concentration were used, the porosity of the scaffolds was between 83-92% and the compression moduli of the scaffolds were between 13 kPa and 28 kPa. Type I collagen acidic solution was introduced into the pores of a PU scaffold to coat the collagen onto the pore walls throughout the whole PU scaffold. The human aortic endothelial cells (HAECs) cultured in the collagen-coated PU scaffold for 2 weeks were observed by scanning electron microscopy (SEM). It was shown that the enhanced SCPL method and the collagen coating resulted in a spatially uniform distribution of cells throughout the collagen-coated PU scaffold.
Resumo:
This paper uses the case study of a hybrid public-private strategic alliance as data to complement and contrast with the traditional views on knowledge transfer and learning between alliance partners. In particular, the paper explores whether the concept of competitive collaboration conceptualized by Hamel (1991) in his seminal work holds true for all forms of strategic alliances. Conceptualizing the knowledge boundaries of organisations in alliances as a ‘collaborative membrane’, we focus attention on the permeability of these boundaries rather than the actual location of the boundaries. In this vein, we present a case study of a major public sector organization that illustrates how these principles have allowed it to start rebuilding its internal capabilities adopting a more collaborative stance and ensuring their knowledge boundaries are highly porous as they move more major projects into hybrid public private alliance contracts.
Resumo:
The structures of the anhydrous 1:1 proton-transfer compounds of 4,5-dichlorophthalic acid (DCPA) with the monocyclic heteroaromatic Lewis bases 2-aminopyrimidine, 3-(aminocarboxy) pyridine (nicotinamide) and 4-(aminocarbonyl) pyridine (isonicotinamide), namely 2-aminopyrimidinium 2-carboxy-4,5-dichlorobenzoate C4H6N3+ C8H3Cl2O4- (I), 3-(aminocarbonyl) pyridinium 2-carboxy-4,5-dichlorobenzoate C6H7N2O+ C8H3Cl2O4- (II) and the unusual salt adduct 4-(aminocarbonyl) pyridinium 2-carboxy-4,5-dichlorobenzoate 2-carboxymethyl-4,5-dichlorobenzoic acid (1/1/1) C6H7N2O+ C8H3Cl2O4-.C9H6Cl2O4 (III) have been determined at 130 K. Compound (I) forms discrete centrosymmetric hydrogen-bonded cyclic bis(cation--anion) units having both R2/2(8) and R2/1(4) N-H...O interactions. In compound (II) the primary N-H...O linked cation--anion units are extended into a two-dimensional sheet structure via amide-carboxyl and amide-carbonyl N-H...O interactions. The structure of (III) reveals the presence of an unusual and unexpected self-synthesized methyl monoester of the acid as an adduct molecule giving one-dimensional hydrogen-bonded chains. In all three structures the hydrogen phthalate anions are
Resumo:
The crystal structure of the hydrated proton-transfer compound of the drug quinacrine [rac-N'-(6-chloro-2-methoxyacridin-9-yl)-N,N-diethylpentane-1,4-diamine] with 4,5-dichlorophthalic acid, C23H32ClN3O2+ . 2(C8H3Cl2O4-).4H2O (I), has been determined at 200 K. The four labile water molecules of solvation form discrete ...O--H...O--H... hydrogen-bonded chains parallel to the quinacrine side chain, the two N--H groups of which act as hydrogen-bond donors for two of the water acceptor molecules. The other water molecules, as well as the acridinium H atom, also form hydrogen bonds with the two anion species and extend the structure into two-dimensional sheets. Between these sheets there are also weak cation--anion and anion--anion pi-pi aromatic ring interactions. This structure represents only the third example of a simple quinacrine derivative for which structural data are available but differs from the other two in that it is unstable in the X-ray beam due to efflorescence, probably associated with the destruction of the unusual four-membered water chain structures.
Resumo:
The structures of two 1:1 proton-transfer red-black dye compounds formed by reaction of aniline yellow [4-(phenyldiazenyl)aniline] with 5-sulfosalicylic acid and benzenesulfonic acid, and a 1:2 nontransfer adduct compound with 3,5-dinitrobenzoic acid have been determined at either 130 or 200 K. The compounds are 2-(4-aminophenyl)-1-phenylhydrazin-1-ium 3-carboxy-4-hydroxybenzenesulfonate methanol solvate, C12H12N3+.C7H5O6S-.CH3OH (I), 2-(4-aminophenyl)-1-hydrazin-1-ium 4-(phenydiazinyl)anilinium bis(benzenesulfonate), 2C12H12N3+.2C6H5O3S-, (II) and 4-(phenyldiazenyl)aniline-3,5-dinitrobenzoic acid (1/2) C12H11N3.2C~7~H~4~N~2~O~6~, (III). In compound (I) the diaxenyl rather than the aniline group of aniline yellow is protonated and this group subsequently akes part in a primary hydrogen-bonding interaction with a sulfonate O-atom acceptor, producing overall a three-dimensional framework structure. A feature of the hydrogen bonding in (I) is a peripheral edge-on cation-anion association involving aromatic C--H...O hydrogen bonds, giving a conjoint R1/2(6)R1/2(7)R2/1(4)motif. In the dichroic crystals of (II), one of the two aniline yellow species in the asymmetric unit is diazenyl-group protonated while in the other the aniline group is protonated. Both of these groups form hydrogen bonds with sulfonate O-atom acceptors and thee, together with other associations give a one-dimensional chain structure. In compound (III), rather than proton-transfer, there is a preferential formation of a classic R2/2(8) cyclic head-to-head hydrogen-bonded carboxylic acid homodimer between the two 3,5-dinitrobenzoic acid molecules, which in association with the aniline yellow molecule that is disordered across a crystallographic inversion centre, result in an overall two-dimensional ribbon structure. This work has shown the correlation between structure and observed colour in crystalline aniline yellow compounds, illustrated graphically in the dichroic benzenesulfonate compound.
Resumo:
Effective knowledge transfer can prevent the reinvention of systems and ideas as well as the repetition of errors. Doing so will save substantial time, as well as contribute to better performance of projects and project-based organisations (PBOs). Despite the importance of knowledge, PBOs face serious barriers to the effective transfer of knowledge, while their characteristics, such as unique and innovative approaches taken during every project, mean they have much to gain from knowledge transfer. As each new project starts, there is the strong potential to reinvent the process, rather than utilise learning from previous projects. In fact, rework is one of the primary factors contributing to construction industry's poor performance and productivity. Current literature has identified several barriers to knowledge transfer in organisational settings in general, and not specifically PBOs. However, PBOs significantly differ from other types of organisations. PBOs operate mainly on temporary projects, where time is a crucial factor and people are more mobile than in other organisational settings. The aim of this research is to identify the key barriers that prevent effective knowledge transfer for PBOs, exclusively. Interviews with project managers and senior managers of PBOs complement the analysis of the literature and provide professional expertise. This research is crucial to gaining a better understanding of obstacles that hinder knowledge transfer in projects. The main contribution of this research is exclusive for PBO, list of key barriers that organisation and project managers need to consider to ensure effective knowledge transfer and better project management.
Resumo:
A continuing challenge for pre-service teacher education is the learning transfer between the university based components and the practical school based components of their training. It is not clear how easily pre-service teachers can transfer university learnings into ‘in school’ practice. Similarly, it is not clear how easily knowledge learned in the school context can be disembedded from this particular context and understood more generally by the pre-service teacher. This paper examines the effect of a community of practice formed specifically to explore learning transfer via collaboration and professional enquiry, in ‘real time’, across the globe. “Activity Theory” (Engestrom, 1999) provided the theoretical framework through which the cognitive, physical and social processes involved could be understood. For the study, three activity systems formed community of practice network. The first activity system involved pre-service teachers at a large university in Queensland, Australia. The second activity system was introduced by the pre-service teachers and involved Year 12 students and teachers at a private secondary school also in Queensland, Australia. The third activity system involved university staff engineers at a large university in Pennsylvania, USA. The common object among the three activity systems was to explore the principles and applications of nanotechnology. The participants in the two Queensland activity systems, controlled laboratory equipment (a high powered Atomic Force Microscope – CPII) in Pennsylvania, USA, with the aim of investigating surface topography and the properties of nano particles. The pre-service teachers were to develop their remote ‘real time’ experience into school classroom tasks, implement these tasks, and later report their findings to other pre-service teachers in the university activity system. As an extension to the project, the pre-service teachers were invited to co-author papers relating to the project. Data were collected from (a) reflective journals; (b) participant field notes – a pre-service teacher initiative; (c) surveys – a pre-service teacher initiative; (d) lesson reflections and digital recordings – a pre-service teacher initiative; and (e) interviews with participants. The findings are reported in terms of the major themes: boundary crossing, the philosophy of teaching, and professional relationships The findings have implications for teacher education. The researchers feel that deliberate planning for networking between activity systems may well be a solution to the apparent theory/practice gap. Proximity of activity systems need not be a hindering issue.
Resumo:
The crystal structures of the 1:1 proton-transfer compounds of 4,5-dichlorophthalic acid with the aliphatic Lewis bases diisopropylamine and hexamethylenetetramine, viz. diisopropylaminium 2-carboxy-4,5-dichlorobenzoate (1) and hexamethylenetetraminium 2-carboxy-4,5-dichlorobenzoate hemihydrate (2), have been determined. Crystals of both 1 and 2 are triclinic, space group P-1, with Z = 2 in cells with a = 7.0299(5), b = 9.4712(7), c = 12.790(1)Å, α = 99.476(6), β = 100.843(6), γ = 97.578(6)o (1) and a = 7.5624(8), b = 9.8918(8), c = 11.5881(16)Å, α = 65.660(6), β = 86.583(4), γ = 86.987(8)o (2). In each, one-dimensional hydrogen-bonded chain structures are found: in 1 formed through aminium N+-H...Ocarboxyl cation-anion interactions. In 2, the chains are formed through anion carboxyl O...H-Obridging water interactions with the cations peripherally bound. In both structures, the hydrogen phthalate anions are essentially planar with short intra-species carboxylic acid O-H...Ocarboxyl hydrogen bonds [O…O, 2.381(3) Å (1) and 2.381(8) Å (2)].
Resumo:
The 1:1 proton-transfer compound of the potent substituted amphetamine hallucinogen (R)-1-(8-bromobenzo[1,2-b; 4,5-b']difuran-4-yl)-2-aminopropane (common trivial name 'bromodragonfly') with 3,5-dinitrosalicylic acid, 1-(8-bromobenzo[1,2-b;4,5-b']difuran-4-yl)-2-mmoniopropane 2-carboxy-4,6-dinitrophenolate, C13H13BrNO2+ C7H3N2O7- forms hydrogen-bonded cation-anion chain substructures comprising undulating head-to-tail anion chains formed through C(8) carboxyl O-H...O(nitro) associations and incorporating the aminium groups of the cations. The intra-chain cation-anion hydrogen-bonding associations feature proximal cyclic R33(8) interactions involving both a N+-H...O(phenolate) and the carboxyl O--H...O(nitro)associations. Also present are aromatic pi-pi ring interactions [minimum ring centroid separation, 3.566(2)A; inter-plane dihedral angle, 5.13(1)deg]. A lateral hydrogen-bonding interaction between the third aminium proton and a carboxyl O acceptor link the chain substructures giving a two-dimensional sheet structure. This determination represents the first of any form of this compound and confirms that it has the (R) absolute configuration. The atypical crystal stability is attributed both to the hydrogen-bonded chain substructures provided by the anions, which accommodate the aminium proton-donor groups of the cations and give cross-linking, and to the presence of cation--anion aromatic ring pi-pi interactions.
Resumo:
Knowledge has been recognised as a source of competitive advantage. Knowledge-based resources allow organisations to adapt products and services to the marketplace and deal with competitive challenges that enable them to compete more effectively. One factor critical to using knowledge-based resources is the ability to transfer knowledge as a dimension of the learning organisation. There are many elements that may influence whether knowledge transfer can be effectively achieved in an organisation such as leadership, problem-solving behaviours, support structures, change management capabilities, absorptive capacity and the nature of the knowledge. An existing framework was applied in a case study to explain how knowledge transfer can be managed effectively and to identify emerging issues or additional factors involved in the process. As a result, a refined framework is proposed that provides a better understanding for the effective management of knowledge transfer processes that can provide a competitive advantage.