54 resultados para SILICATES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structure and chemistry of poorly characterized phases (PCP). We suggest here that approximately 10 angstrom PCP, a dominant matrix variety, has a structure equivalent to iron-rich tochilinite [6Fe (sub 0.9) S 5(Fe, Mg) (OH) (sub 2) ] which consists of coherently interstratified mackinawite and brucite sheets. approximately 17 angstrom PCP, previously described as an SBB-type mixed-layer structure, is a commensurate intergrowth of serpentine and tochilinite layers. A wide range of cation substitutions is possible within both tochilinite and serpentine-tochilinite structural types. Various forms of PCP observed in carbonaceous chondrites are intergrowths of tochilinite, serpentine, serpentine-tochilinite and/or valleriite-type minerals.--Modified journal abstract.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An important component of current models for interstellar and circumstellar evolution is the infrared (IR)spectral data collected from stellar outflows around oxygen-rich stars and from the general interstellar medium [1]. IR spectra from these celestial bodies are usually interpreted as showing the general properties of sub-micron sized silicate grains [2]. Two major features at 10 and 20 microns are reasonably attributed to amorphous olivine or pyroxene (e.g. Mg2Si04 or MgSi03) on the basis of comparisons with natural standards and vapor condensed silicates [3-6]. In an attempt to define crystallisation rates for spectrally amorphous condensates, Nuth and Donn [5] annealed experimentally produced amorphous magnesium silicate smokes at 1000K. On analysing these smokes at various annealing times, Nuth and Donn [5] showed that changes in crystallinity measured by bulk X-ray diffraction occured at longer annealing times (days) than changes measured by IR spectra (a few hours). To better define the onset of crystallinity in these magnesium silicates, we have examined each annealed product using a JEOL 1OOCX analytical electron microscope (AEM). In addition, the development of chemical diversity with annealing has been monitored using energy dispersive spectroscopy of individual grains from areas <20nm in diameter. Furthermore, the crystallisation kinetics of these smokes under ambient, room temperature conditions have been examined using bulk and fourier transform infrared (FTIR)spectra.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The average structure (CI) of a volcanic plagioclase megacryst with composition Ano, from the Hogarth Ranges, Australia, has been determined using three-dimensional, singlecrystal neutron and X-ray diffraction data. Least squaresr efinements, incorporating anisotropic thermal motion of all atoms and an extinction correction, resulted in weighted R factors (based on intensities) of 0.076 and 0.056, respectively, for the neutron and X-ray data. Very weak e reflections could be detected in long-exposure X-ray and electron diffraction photographs of this crystal, but the refined average structure is believed to be unaffected by the presence of such a weak superstructure. The ratio of the scattering power of Na to that of Ca is different for X ray and neutron radiation, and this radiation-dependence of scattering power has been used to determine the distribution of Na and Ca over a split-atom M site (two sites designated M' and M") in this Ano, plagioclase. Relative peak-height ratios M'/M", revealed in difference Fourier sections calculated from neutron and X-ray data, formed the basis for the cation-distribution analysis. As neutron and X-ray data sets were directly compared in this analysis, it was important that systematic bias between refined neutron and X-ray positional parameters could be demonstrated to be absent. In summary, with an M-site model constrained only by the electron-microprobedetermined bulk composition of the crystal, the following values were obtained for the M-site occupanciesN: ar, : 0.29(7),N ar. : 0.23(7),C ar, : 0.15(4),a nd Car" : 0.33(4). These results indicate that restrictive assumptions about M sites, on which previous plagioclase refinements have been based, are not applicable to this Ano, and possibly not to the entire compositional range. T-site ordering determined by (T-O) bond-length variation-t,o : 0.51(l), trm = t2o = t2m = 0.32(l)-is weak, as might be expectedf rom the volcanic origin of this megacryst.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimentally obtained Mg.SiO smokes were studied by analytical electron microscopy using the same samples that had been previously characterized by repeated infrared spectroscopy. Analytical electron microscopy shows that unannealed smokes contain some degree of microcrystallinity which increases with increased annealing for up to 30 hr. An SiO2 polymorph (tridymite) and MgO may form contemporaneously as a result of growth of forsterite (Mg2SiO4) microcrystallites in the initially nonstoichiometric smokes. After 4 hr annealing, forsterite and tridymite react to enstatite (MgSiO3). We suggest that infrared spectroscopy and X-ray diffraction analysis should be complemented by detailed analytical electron microscopy to detect budding crystallinity in vapor phase condensates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of matrices of rare Type 4 carbonaceous chondrites can reveal important information on parent body rnetamorp~ic processes and provide a comparison with processes on parent bodies of ordinary chc-idrites. Reflectance spectra (Tholen, 1984) from the two largest asteroids in the asteroid belt, Ceres and Pallas, suggest that they may be metamorphosed carbonaceous chondrites. These two asteroids constitute - onethird of the mass in the asteroid belt implying that type 4-6 carbonaceous chondrites are poorly represented in the meteorite collection and may be of considerable importance. The matrix of the C4 chondrite Karoonda has been investigated using a JEOL 2000FX analytical electron microscope (AEM) with an attached Tracor-Northem TN5500 energy dispersive spectrometer (EDS). In previous studies (Scott and Taylor, 1985; Fitzgerald, 1979; Van Schmus, 1969), the petrography of the Karoonda matrix has been described as consisting largely of coarse-grained (50-200 urn in size) olivine and plagioclase (20-100 um in size), associated with micrometer sized magnetite and rare sulphides. AEM observations on matrix show that in addition to these large grains, there is a significant fraction (10 vol%) of interstitial fine grained phases « 5 urn). The mineralogy of these fine-grained phases differs in some respects from that of the coarser-grained matrix identified by optical and SEM techniques (Scott and Taylor, 1985; Fitzgerald, 1979; Van Schmus, 1969). I~ particular crystals of two compositionally distinct pyroxenes « 2 urn in size) have been identified which have not been previously observed in Karoonda by other analytical techniques. Thin film microanalyses (Mackinnon et al., 1986) of these two pyroxenes indicate compositions consistent with augite and low-Ca pyroxene (- Fs27). Fine-grained anhedral olivine « 2 urn size) is the most abundant phase with composition -Fa29' This composition is essentially indistinguishable from that determined for coarser-grained matrix olivines using an electron microprobe (Scott and Taylor, 1985; Fitzgerald, 1979; Van Schmus, 1969). All olivines are associated with subhedral magnetites « 1 urn size) which contain significant Cr (- 2%) and Al (- 1%) as was also noted for larger sized Karoonda magnetites by Delaney et al. (1985). It has recently been suggested (Burgess et al., 1987) on the basis of sulphur release profiles for S-isotope analyses of Karoonda that CaS04 (anhydrite) may be present. However, no sulphate phase has, as yet, been identified in the matrix of Karoonda. Low magnification contrast images suggest that Karoonda may have a significant porosity within the fine-grained matrix fraction. Most crystals are anhedral and do not show evidence for significant compaction. Individual grains often show single point contact with other grains which result in abundant intergranular voids. These voids frequently contain epoxy which was used as part of the specimen preparation procedure due to the friable nature of the bulk sample.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From a mineralogical survey of approximately 30 chondritic micrometeorites collected from the lower stratosphere and studied in detail using current electron microscopy techniques, it is concluded that these particles represent a unique group of extraterrestrial materials. These micrometeorites differ significantly in form and texture from components of carbonaceous chondrites and contain some mineral assemblages which do not occur in any meteorite class. Electron microscope investigations of chondritic micrometeorites have established that these materials (1) are extraterrestrial in origin, (2) existed in space as small objects, (3) endured minimal alteration by planetary processes since formation, and (4) can suffer minimal pulse heating (<600°C) on entering earth's atmosphere. The probable sources for chondritic interplanetary dust particles (IDPs) are cometary and asteroidal debris and, perhaps to a lesser extent, interstellar regions. These sources have not been conclusively linked to any specific mineralogical subset of IDP, although the chondritic porous (CP) aggregate is considered of likely cometary origin. Chondritic IDPs occur in two predominant mineral assemblages: (1) carbonaceous phases and phyllosilicates and (2) carbonaceous phases and nesosilicates or inosilicates, although particles with both types of silicate assemblages are observed. Olivines, pyroxenes, layer silicates, and carbon-rich phases are the most commonly occurring minerals in many chondritic IDPs. Other phases often observed in variable proportions include sulphides, spinels, metals, metal carbides, carbonates, and minor amounts of sulphates and phosphates. Individual mineral grain sizes range from micrometers (primarily pyroxenes and olivines) to nanometers, with the predominant size for all phases less than 100 nm. Specific mineral characteristics for particular chondritic IDPs provide an indication of processes which may have occurred prior to collection in the earth's stratosphere. For example, pyroxene mineralogy in some chondritic aggregates is consistent with condensation from a vapor phase and, we consider, with condensation in a turbulent solar nebula at relatively low temperatures (<1000°C). Carbonaceous phases present in other CP aggregates have been used to imply low-temperature formation processes such as Fischer-Tropsch synthesis (∼530°C) or carbonization and graphitization (∼315°C). Alteration processes have been implicated in the formation of some layer silicates in CP aggregates and may have involved hydrocryogenic alteration at <0°C. In general, interpretations of transformation processes on submicrometer-size minerals in chondritic IDPs are consistent with formation at a radius equivalent to the asteroid belt or greater during the later stages of solar nebula evolution using currently available models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CI chondrites are used pervasively in the meteorite literature as a cosmochemical reference point for bulk compositions[1], isotope analyses[2] and, within certain models of meteorite evolution, as an important component of an alteration sequence within the carbonaceous chondrite subset[3]. More recently, the chemical variablity of CI chondrite matrices (which comprise >80% of the meteorite), has been cited in discussions about the "chondritic" nature of spectroscopic data from P/comet Halley missions[4] and of chemical data from related materials such as interplanetary dust particles[5]. Most CI chondrites have been studied as bulk samples(e.g. major and trace element abundances)and considerable effort has also been focussed on accessory phases such as magnetites, olivine, sulphates and carbonates [6-8]. A number of early studies showed that the primary constituents of CI matrices are layer silicates and the most definitive structural study on powdered samples identified two minerals: montmorillonite and serpentine[9]. In many cases, as with the study by Bass[9],the relative scarcity of most CI chondrites restricts such bulk analyses to the Orgueil meteorite. The electron microprobe/SEM has been used on petrographic sections to more precisely define the "bulk" composition of at least four CI matrices[3], and as recently summarised by McSween[3], these data define a compositional trend quite different to that obtained for CM chondrite matrices. These "defocussed-beam" microprobe analyses average major element compositions over matrix regions ~lOOµm in diameter and provide only an approximation to silicate mineral composition(s) because their grain sizes are much less than the diameter of the beam. In order to (a) more precisely define the major element compositions of individual mineral grains within CI matrices, and (b)complement previous TEM studies [11,12], we have undertaken an analytical electron microscopy (AEM) study of Alais and Orgueil matrices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This chapter reviews green grains from the shelf of French Guiana as a regional example of sedimentologic process occurring on the whole stable continental margin from the Amazon to the Orinoco River. Green grains have been observed and analyzed off the Orinoco delta and on the continental shelf of Surinam. These green grains were identified as “chamosite” and “glauconite.” The muddy coast of French Guiana is generally very flat and occupied by wet swamps and mangrove as a result of the equatorial climate. Most green grains on the continental shelf represent the verdine facies. Green grains are ubiquitous on the shelf and top of the slope off French Guiana. Two sedimentological facies exist: glaucony deeper than 150 m and verdine at shallower depths. The verdine facies has mainly developed from mineral debris and especially chloritized biotite. Carbonate bioclasts and faecal pellets are also utilized. The mica flakes were never wholly replaced by authigenic clay and the phenomenon leads to mixed grains where authigenic and substrate remains are recognizable. Carbonate substrates lead to mainly clay pure green grains becasue the initial carbonate has been dissolved. The formation of verdine can be located in a general marine environment at a comparatively warm sea-water temperature and at a depth probably shallower than 60 m.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mineralogical survey of chondritic interplanetary dust particles (IDPs)showed that these micrometeorites differ significantly in form and texture from components of carbonaceous chondrites and contain some mineral assemblages which do not occur in any meteorite class1. Models of chondritic IDP mineral evolution generally ignore the typical (ultra-) fine grain size of consituent minerals which range between 0.002-0.1µm in size2. The chondritic porous (CP) subset of chondritic IDPs is probably debris from short period comets although evidence for a cometary origin is still circumstantial3. If CP IDPs represent dust from regions of the Solar System in which comet accretion occurred, it can be argued that pervasive mineralogical evolution of IDP dust has been arrested due to cryogenic storage in comet nuclei. Thus, preservation in CP IDPs of "unusual meteorite minerals", such as oxides of tin, bismuth and titanium4, should not be dismissed casually. These minerals may contain specific information about processes that occurred in regions of the solar nebula, and early Solar System, which spawned the IDP parent bodies such as comets and C, P and D asteroids6. It is not fully appreciated that the apparent disparity between the mineralogy of CP IDPs and carbonaceous chondrite matrix may also be caused by the choice of electron-beam techniques with different analytical resolution. For example, Mg-Si-Fe distributions of Cl matrix obtained by "defocussed beam" microprobe analyses are displaced towards lower Fe-values when using analytical electron microscope (AEM)data which resolve individual mineral grains of various layer silicates and magnetite in the same matrix6,7. In general, "unusual meteorite minerals" in chondritic IDPs, such as metallic titanium, Tin01-n(Magneli phases) and anatase8 add to the mineral data base of fine-grained Solar System materials and provide constraints on processes that occurred in the early Solar System.

Relevância:

10.00% 10.00%

Publicador: