80 resultados para Rigid body with a fixed point


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chapter investigates Shock Control Bumps (SCB) on a Natural Laminar Flow (NLF) aerofoil; RAE 5243 for Active Flow Control (AFC). A SCB approach is used to decelerate supersonic flow on the suction/pressure sides of transonic aerofoil that leads delaying shock occurrence or weakening of shock strength. Such an AFC technique reduces significantly the total drag at transonic speeds. This chapter considers the SCB shape design optimisation at two boundary layer transition positions (0 and 45%) using an Euler software coupled with viscous boundary layer effects and robust Evolutionary Algorithms (EAs). The optimisation method is based on a canonical Evolution Strategy (ES) algorithm and incorporates the concepts of hierarchical topology and parallel asynchronous evaluation of candidate solution. Two test cases are considered with numerical experiments; the first test deals with a transition point occurring at the leading edge and the transition point is fixed at 45% of wing chord in the second test. Numerical results are presented and it is demonstrated that an optimal SCB design can be found to significantly reduce transonic wave drag and improves lift on drag (L/D) value when compared to the baseline aerofoil design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose a new method for face recognition using fractal codes. Fractal codes represent local contractive, affine transformations which when iteratively applied to range-domain pairs in an arbitrary initial image result in a fixed point close to a given image. The transformation parameters such as brightness offset, contrast factor, orientation and the address of the corresponding domain for each range are used directly as features in our method. Features of an unknown face image are compared with those pre-computed for images in a database. There is no need to iterate, use fractal neighbor distances or fractal dimensions for comparison in the proposed method. This method is robust to scale change, frame size change and rotations as well as to some noise, facial expressions and blur distortion in the image

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic Resonance Imaging was used to study changes in the crystalline lens and ciliary body with accommodation and aging. Monocular images were obtained in 15 young (19-29 years) and 15 older (60-70 years) emmetropes when viewing at far (6m) and at individual near points (14.5 to 20.9 cm) in the younger group. With accommodation, lens thickness increased (mean±95% CI: 0.33±0.06mm) by a similar magnitude to the decrease in anterior chamber depth (0.31±0.07mm) and equatorial diameter (0.32±0.04mm) with a decrease in the radius of curvature of the posterior lens surface (0.58±0.30mm). Anterior lens surface shape could not be determined due to the overlapping region with the iris. Ciliary ring diameter decreased (0.44±0.17mm) with no decrease in circumlental space or forward ciliary body movement. With aging, lens thickness increased (mean±95% CI: 0.97±0.24mm) similar in magnitude to the sum of the decrease in anterior chamber depth (0.45±0.21mm) and increase in anterior segment depth (0.52±0.23mm). Equatorial lens diameter increased (0.28±0.23mm) with no change in the posterior lens surface radius of curvature. Ciliary ring diameter decreased (0.57±0.41mm) with reduced circumlental space (0.43±0.15mm) and no forward ciliary body movement. Accommodative changes support the Helmholtz theory of accommodation including an increase in posterior lens surface curvature. Certain aspects of aging changes mimic accommodation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Digital human modelling (DHM) has today matured from research into industrial application. In the automotive domain, DHM has become a commonly used tool in virtual prototyping and human-centred product design. While this generation of DHM supports the ergonomic evaluation of new vehicle design during early design stages of the product, by modelling anthropometry, posture, motion or predicting discomfort, the future of DHM will be dominated by CAE methods, realistic 3D design, and musculoskeletal and soft tissue modelling down to the micro-scale of molecular activity within single muscle fibres. As a driving force for DHM development, the automotive industry has traditionally used human models in the manufacturing sector (production ergonomics, e.g. assembly) and the engineering sector (product ergonomics, e.g. safety, packaging). In product ergonomics applications, DHM share many common characteristics, creating a unique subset of DHM. These models are optimised for a seated posture, interface to a vehicle seat through standardised methods and provide linkages to vehicle controls. As a tool, they need to interface with other analytic instruments and integrate into complex CAD/CAE environments. Important aspects of current DHM research are functional analysis, model integration and task simulation. Digital (virtual, analytic) prototypes or digital mock-ups (DMU) provide expanded support for testing and verification and consider task-dependent performance and motion. Beyond rigid body mechanics, soft tissue modelling is evolving to become standard in future DHM. When addressing advanced issues beyond the physical domain, for example anthropometry and biomechanics, modelling of human behaviours and skills is also integrated into DHM. Latest developments include a more comprehensive approach through implementing perceptual, cognitive and performance models, representing human behaviour on a non-physiologic level. Through integration of algorithms from the artificial intelligence domain, a vision of the virtual human is emerging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a three-dimensional nonlinear rigid body model has been developed for the investigation of the crashworthiness of a passenger train using the multibody dynamics approach. This model refers to a typical design of passenger cars and train constructs commonly used in Australia. The high-energy and low-energy crush zones of the cars and the train constructs are assumed and the data are explicitly provided in the paper. The crash scenario is limited to the train colliding on to a fixed barrier symmetrically. The simulations of a single car show that this initial design is only applicable for the crash speed of 35 km/h or lower. For higher speeds (e.g. 140 km/h), the crush lengths or crush forces or both the crush zone elements will have to be enlarged. It is generally better to increase the crush length than the crush force in order to retain the low levels of the longitudinal deceleration of the passenger cars.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diet Induced Thermogenesis (DIT) is the energy expended consequent to meal consumption, and reflects the energy required for the processing and digestion of food consumed throughout each day. Although DIT is the total energy expended across a day in digestive processes to a number of meals, most studies measure thermogenesis in response to a single meal (Meal Induced Thermogenesis: MIT) as a representation of an individual’s thermogenic response to acute food ingestion. As a component of energy expenditure, DIT may have a contributing role in weight gain and weight loss. While the evidence is inconsistent, research has tended to reveal a suppressed MIT response in obese compared to lean individuals, which identifies individuals with an efficient storage of food energy, hence a greater tendency for weight gain. Appetite is another factor regulating body weight through its influence on energy intake. Preliminary research has shown a potential link between MIT and postprandial appetite as both are responses to food ingestion and have a similar response dependent upon the macronutrient content of food. There is a growing interest in understanding how both MIT and appetite are modified with changes in diet, activity levels and body size. However, the findings from MIT research have been highly inconsistent, potentially due to the vastly divergent protocols used for its measurement. Therefore, the main theme of this thesis was firstly, to address some of the methodological issues associated with measuring MIT. Additionally this thesis aimed to measure postprandial appetite simultaneously to MIT to test for any relationships between these meal-induced variables and to assess changes that occur in MIT and postprandial appetite during periods of energy restriction (ER) and following weight loss. Two separate studies were conducted to achieve these aims. Based on the increasing prevalence of obesity, it is important to develop accurate methodologies for measuring the components potentially contributing to its development and to understand the variability within these variables. Therefore, the aim of Study One was to establish a protocol for measuring the thermogenic response to a single test meal (MIT), as a representation of DIT across a day. This was done by determining the reproducibility of MIT with a continuous measurement protocol and determining the effect of measurement duration. The benefit of a fixed resting metabolic rate (RMR), which is a single measure of RMR used to calculate each subsequent measure of MIT, compared to separate baseline RMRs, which are separate measures of RMR measured immediately prior to each MIT test meal to calculate each measure of MIT, was also assessed to determine the method with greater reproducibility. Subsidiary aims were to measure postprandial appetite simultaneously to MIT, to determine its reproducibility between days and to assess potential relationships between these two variables. Ten healthy individuals (5 males, 5 females, age = 30.2 ± 7.6 years, BMI = 22.3 ± 1.9 kg/m2, %Fat Mass = 27.6 ± 5.9%) undertook three testing sessions within a 1-4 week time period. During the first visit, participants had their body composition measured using DXA for descriptive purposes, then had an initial 30-minute measure of RMR to familiarise them with the testing and to be used as a fixed baseline for calculating MIT. During the second and third testing sessions, MIT was measured. Measures of RMR and MIT were undertaken using a metabolic cart with a ventilated hood to measure energy expenditure via indirect calorimetry with participants in a semi-reclined position. The procedure on each MIT test day was: 1) a baseline RMR measured for 30 minutes, 2) a 15-minute break in the measure to consume a standard 576 kcal breakfast (54.3% CHO, 14.3% PRO, 31.4% FAT), comprising muesli, milk toast, butter, jam and juice, and 3) six hours of measuring MIT with two, ten-minute breaks at 3 and 4.5 hours for participants to visit the bathroom. On the MIT test days, pre and post breakfast then at 45-minute intervals, participants rated their subjective appetite, alertness and comfort on visual analogue scales (VAS). Prior to each test, participants were required to be fasted for 12 hours, and have undertaken no high intensity physical activity for the previous 48 hours. Despite no significant group changes in the MIT response between days, individual variability was high with an average between-day CV of 33%, which was not significantly improved by the use of a fixed RMR to 31%. The 95% limits of agreements which ranged from 9.9% of energy intake (%EI) to -10.7%EI with the baseline RMRs and between 9.6%EI to -12.4%EI with the fixed RMR, indicated very large changes relative to the size of the average MIT response (MIT 1: 8.4%EI, 13.3%EI; MIT 2: 8.8%EI, 14.7%EI; baseline and fixed RMRs respectively). After just three hours, the between-day CV with the baseline RMR was 26%, which may indicate an enhanced MIT reproducibility with shorter measurement durations. On average, 76, 89, and 96% of the six-hour MIT response was completed within three, four and five hours, respectively. Strong correlations were found between MIT at each of these time points and the total six-hour MIT (range for correlations r = 0.990 to 0.998; P < 0.01). The reproducibility of the proportion of the six-hour MIT completed at 3, 4 and 5 hours was reproducible (between-day CVs ≤ 8.5%). This indicated the suitability to use shorter durations on repeated occasions and a similar percent of the total response to be completed. There was a lack of strong evidence of any relationship between the magnitude of the MIT response and subjective postprandial appetite. Given a six-hour protocol places a considerable burden on participants, these results suggests that a post-meal measurement period of only three hours is sufficient to produce valid information on the metabolic response to a meal. However while there was no mean change in MIT between test days, individual variability was large. Further research is required to better understand which factors best explain the between-day variability in this physiological measure. With such a high prevalence of obesity, dieting has become a necessity to reduce body weight. However, during periods of ER, metabolic and appetite adaptations can occur which may impede weight loss. Understanding how metabolic and appetite factors change during ER and weight loss is important for designing optimal weight loss protocols. The purpose of Study Two was to measure the changes in the MIT response and subjective postprandial appetite during either continuous (CONT) or intermittent (INT) ER and following post diet energy balance (post-diet EB). Thirty-six obese male participants were randomly assigned to either the CONT (Age = 38.6 ± 7.0 years, weight = 109.8 ± 9.2 kg, % fat mass = 38.2 ± 5.2%) or INT diet groups (Age = 39.1 ± 9.1 years, weight = 107.1 ± 12.5 kg, % fat mass = 39.6 ± 6.8%). The study was divided into three phases: a four-week baseline (BL) phase where participants were provided with a diet to maintain body weight, an ER phase lasting either 16 (CONT) or 30 (INT) weeks, where participants were provided with a diet which supplied 67% of their energy balance requirements to induce weight loss and an eight-week post-diet EB phase, providing a diet to maintain body weight post weight loss. The INT ER phase was delivered as eight, two-week blocks of ER interspersed with two-week blocks designed to achieve weight maintenance. Energy requirements for each phase were predicted based on measured RMR, and adjusted throughout the study to account for changes in RMR. All participants completed MIT and appetite tests during BL and the ER phase. Nine CONT and 15 INT participants completed the post-diet EB MIT and 14 INT and 15 CONT participants completed the post-diet EB appetite tests. The MIT test day protocol was as follows: 1) a baseline RMR measured for 30 minutes, 2) a 15-minute break in the measure to consume a standard breakfast meal (874 kcal, 53.3% CHO, 14.5% PRO, 32.2% FAT), and 3) three hours of measuring MIT. MIT was calculated as the energy expenditure above the pre-meal RMR. Appetite test days were undertaken on a separate day using the same 576 kcal breakfast used in Study One. VAS were used to assess appetite pre and post breakfast, at one hour post breakfast then a further three times at 45-minute intervals. Appetite ratings were calculated for hunger and fullness as both the intra-meal change in appetite and the AUC. The three-hour MIT response at BL, ER and post-diet EB respectively were 5.4 ± 1.4%EI, 5.1 ± 1.3%EI and 5.0 ± 0.8%EI for the CONT group and 4.4 ± 1.0%EI, 4.7 ± 1.0%EI and 4.8 ± 0.8%EI for the INT group. Compared to BL, neither group had significant changes in their MIT response during ER or post-diet EB. There were no significant time by group interactions (p = 0.17) indicating a similar response to ER and post-diet EB in both groups. Contrary to what was hypothesised, there was a significant increase in postprandial AUC fullness in response to ER in both groups (p < 0.05). However, there were no significant changes in any of the other postprandial hunger or fullness variables. Despite no changes in MIT in both the CONT or INT group in response to ER or post-diet EB and only a minor increase in postprandial AUC fullness, the individual changes in MIT and postprandial appetite in response to ER were large. However those with the greatest MIT changes did not have the greatest changes in postprandial appetite. This study shows that postprandial appetite and MIT are unlikely to be altered during ER and are unlikely to hinder weight loss. Additionally, there were no changes in MIT in response to weight loss, indicating that body weight did not influence the magnitude of the MIT response. There were large individual changes in both variables, however further research is required to determine whether these changes were real compensatory changes to ER or simply between-day variation. Overall, the results of this thesis add to the current literature by showing the large variability of continuous MIT measurements, which make it difficult to compare MIT between groups and in response to diet interventions. This thesis was able to provide evidence to suggest that shorter measures may provide equally valid information about the total MIT response and can therefore be utilised in future research in order to reduce the burden of long measurements durations. This thesis indicates that MIT and postprandial subjective appetite are most likely independent of each other. This thesis also shows that, on average, energy restriction was not associated with compensatory changes in MIT and postprandial appetite that would have impeded weight loss. However, the large inter-individual variability supports the need to examine individual responses in more detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finite element frame analysis programs targeted for design office application necessitate algorithms which can deliver reliable numerical convergence in a practical timeframe with comparable degrees of accuracy, and a highly desirable attribute is the use of a single element per member to reduce computational storage, as well as data preparation and the interpretation of the results. To this end, a higher-order finite element method including geometric non-linearity is addressed in the paper for the analysis of elastic frames for which a single element is used to model each member. The geometric non-linearity in the structure is handled using an updated Lagrangian formulation, which takes the effects of the large translations and rotations that occur at the joints into consideration by accumulating their nodal coordinates. Rigid body movements are eliminated from the local member load-displacement relationship for which the total secant stiffness is formulated for evaluating the large member deformations of an element. The influences of the axial force on the member stiffness and the changes in the member chord length are taken into account using a modified bowing function which is formulated in the total secant stiffness relationship, for which the coupling of the axial strain and flexural bowing is included. The accuracy and efficiency of the technique is verified by comparisons with a number of plane and spatial structures, whose structural response has been reported in independent studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various models for the crystal structure of hydronium jarosite were determined from Rietveld refinements against neutron powder diffraction patterns collected at ambient temperature and also single-crystal X-ray diffraction data. The possibility of a lower symmetry space group for hydronium jarosite that has been suggested by the literature was investigated. It was found the space group is best described as R3¯m, the same for other jarosite minerals. The hydronium oxygen atom was found to occupy the 3¯m site (3a Wyckoff site). Inadequately refined hydronium bond angles and bond distances without the use of restraints are due to thermal motion and disorder of the hydronium hydrogen atoms across numerous orientations. However, the acquired data do not permit a precise determination of these orientations; the main feature up/down disorder of hydronium is clear. Thus, the highest symmetry model with the least disorder necessary to explain all data was chosen: The hydronium hydrogen atoms were modeled to occupy an m (18 h Wyckoff site) with 50 % fractional occupancy, leading to disorder across two orientations. A rigid body description of the hydronium ion rotated by 60° with H–O–H bond angles of 112° and O–H distances of 0.96 Å was optimal. This rigid body refinement suggests that hydrogen bonds between hydronium hydrogen atoms and basal sulfate oxygen atoms are not predominant. Instead, hydrogen bonds are formed between hydronium hydrogen atoms and hydroxyl oxygen atoms. The structure of hydronium alunite is expected to be similar given that alunite supergroup minerals are isostructural.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finite element frame analysis programs targeted for design office application necessitate algorithms which can deliver reliable numerical convergence in a practical timeframe with comparable degrees of accuracy, and a highly desirable attribute is the use of a single element per member to reduce computational storage, as well as data preparation and the interpretation of the results. To this end, a higher-order finite element method including geometric non-linearity is addressed in the paper for the analysis of elastic frames for which a single element is used to model each member. The geometric non-linearity in the structure is handled using an updated Lagrangian formulation, which takes the effects of the large translations and rotations that occur at the joints into consideration by accumulating their nodal coordinates. Rigid body movements are eliminated from the local member load-displacement relationship for which the total secant stiffness is formulated for evaluating the large member deformations of an element. The influences of the axial force on the member stiffness and the changes in the member chord length are taken into account using a modified bowing function which is formulated in the total secant stiffness relationship, for which the coupling of the axial strain and flexural bowing is included.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In spite of the extensive usage of continuous welded rails, a number of rail joints still exist in the track. Although a number of them exist as part of turnouts in the yards where the speed is not of concern, the Insultated Rail Joints (IRJs) that exist in ballasted tracks remain a source of significant impact loading. A portion of the dynamic load generated at the rail joints due to wheel passage is transmitted to the support system which leads to permanent settlements of the ballast layer with subsequent vertical misalignment of the sleepers around the rail joints. The vertical misalignment of the adjacent sleepers forms a source of high frequency dynamic load raisers causing significant maintenance work including localised grinding of railhead around the joint, re-alignment of the sleepers and/or ballast tamping or track component renewals/repairs. These localised maintenance activities often require manual inspections and disruptions to the train traffic loading to significant costs to the rail industry. Whilst a number of studies have modelled the effect of joints as dips, none have specifically attended to the effect of vertical misalignment of the sleepers on the dynamic response of rail joints. This paper presents a coupled finite element track model and rigid body track-vehicle interaction model through which the effects of vertical of sleepers on the increase in dynamic loads around the IRJ are studied. The finite element track model is employed to determine the generated dip from elastic deformations as well as the vertical displacement of sleepers around the joint. These data (dip and vertical misalignments) are then imported into the rigid body vehicle-track interaction model to calculate the dynamic loads.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While genomics provide important information about the somatic genetic changes, and RNA transcript profiling can reveal important expression changes that correlate with outcome and response to therapy, it is the proteins that do the work in the cell. At a functional level, derangements within the proteome, driven by post-translational and epigenetic modifications, such as phosphorylation, is the cause of a vast majority of human diseases. Cancer, for instance, is a manifestation of deranged cellular protein molecular networks and cell signaling pathways that are based on genetic changes at the DNA level. Importantly, the protein pathways contain the drug targets in signaling networks that govern overall cellular survival, proliferation, invasion and cell death. Consequently, the promise of proteomics resides in the ability to extend analysis beyond correlation to causality. A critical gap in the information knowledge base of molecular profiling is an understanding of the ongoing activity of protein signaling in human tissue: what is activated and “in use” within the human body at any given point in time. To address this gap, we have invented a new technology, called reverse phase protein microarrays, that can generate a functional read-out of cell signaling networks or pathways for an individual patient obtained directly from a biopsy specimen. This “wiring diagram” can serve as the basis for both, selection of a therapy and patient stratification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At CRYPTO 2006, Halevi and Krawczyk proposed two randomized hash function modes and analyzed the security of digital signature algorithms based on these constructions. They showed that the security of signature schemes based on the two randomized hash function modes relies on properties similar to the second preimage resistance rather than on the collision resistance property of the hash functions. One of the randomized hash function modes was named the RMX hash function mode and was recommended for practical purposes. The National Institute of Standards and Technology (NIST), USA standardized a variant of the RMX hash function mode and published this standard in the Special Publication (SP) 800-106. In this article, we first discuss a generic online birthday existential forgery attack of Dang and Perlner on the RMX-hash-then-sign schemes. We show that a variant of this attack can be applied to forge the other randomize-hash-then-sign schemes. We point out practical limitations of the generic forgery attack on the RMX-hash-then-sign schemes. We then show that these limitations can be overcome for the RMX-hash-then-sign schemes if it is easy to find fixed points for the underlying compression functions, such as for the Davies-Meyer construction used in the popular hash functions such as MD5 designed by Rivest and the SHA family of hash functions designed by the National Security Agency (NSA), USA and published by NIST in the Federal Information Processing Standards (FIPS). We show an online birthday forgery attack on this class of signatures by using a variant of Dean’s method of finding fixed point expandable messages for hash functions based on the Davies-Meyer construction. This forgery attack is also applicable to signature schemes based on the variant of RMX standardized by NIST in SP 800-106. We discuss some important applications of our attacks and discuss their applicability on signature schemes based on hash functions with ‘built-in’ randomization. Finally, we compare our attacks on randomize-hash-then-sign schemes with the generic forgery attacks on the standard hash-based message authentication code (HMAC).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For complex disease genetics research in human populations, remarkable progress has been made in recent times with the publication of a number of genome-wide association scans (GWAS) and subsequent statistical replications. These studies have identified new genes and pathways implicated in disease, many of which were not known before. Given these early successes, more GWAS are being conducted and planned, both for disease and quantitative phenotypes. Many researchers and clinicians have DNA samples available on collections of families, including both cases and controls. Twin registries around the world have facilitated the collection of large numbers of families, with DNA and multiple quantitative phenotypes collected on twin pairs and their relatives. In the design of a new GWAS with a fixed budget for the number of chips, the question arises whether to include or exclude related individuals. It is commonly believed to be preferable to use unrelated individuals in the first stage of a GWAS because relatives are 'over-matched' for genotypes. In this study, we quantify that for GWAS of a quantitative phenotype, relative to a sample of unrelated individuals surprisingly little power is lost when using relatives. The advantages of using relatives are manifold, including the ability to perform more quality control, the choice to perform within-family tests of association that are robust to population stratification, and the ability to perform joint linkage and association analysis. Therefore, the advantages of using relatives in GWAS for quantitative traits may well outweigh the small disadvantage in terms of statistical power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper provides an overview of the Australian Government’s Facilities Management (FM) Action Agenda as announced in 2004 as a key policy plank designed to facilitate growth of the FM industry. The resulting consultation with industry leaders has seen the criterion and release in April 2005 of the FM Action Agenda’s strategic plan entitled ‘Managing the Built Environment’. This framework, representing a collaboration between the Australian Government, public and private sector stakeholders and Facility Management Association of Australia (FMA Australia) and other allied bodies, sets out to achieve the vision of a more “…productive and sustainable built environment…” through improved innovation, education and standards. The 36 month implementation phase is now underway and will take a multi-pronged approach to enhancing the recognition of the FM industry and removing impediments to its growth with a 20 point action plan across the following platforms: • Innovation – Improved appreciation of facility life cycles, and greater understanding of the key drivers of workplace productivity, and the improved application of information technology. • Education and Training – Improved access to dedicated FM education and training opportunities and creation clear career pathways into the profession. • Regulatory Reform – Explore opportunities to harmonise cross jurisdictional regulatory compliance requirements that have an efficiency impact on FM. • Sustainability – Improved utilization of existing knowledge and the development of tools and opportunities to improve the environmental performance of facilities. Additional information is available at www.fma.com.au

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role that heparanase plays during metastasis and angiogenesis in tumors makes it an attractive target for cancer therapeutics. Despite this enzyme’s significance, most of the assays developed to measure its activity are complex. Moreover, they usually rely on labeling variable preparations of the natural substrate heparan sulfate, making comparisons across studies precarious. To overcome these problems, we have developed a convenient assay based on the cleavage of the synthetic heparin oligosaccharide fondaparinux. The assay measures the appearance of the disaccharide product of heparanase-catalyzed fondaparinux cleavage colorimetrically using the tetrazolium salt WST-1. Because this assay has a homogeneous substrate with a single point of cleavage, the kinetics of the enzyme can be reliably characterized, giving a Km of 46 μM and a kcat of 3.5 s−1 with fondaparinux as substrate. The inhibition of heparanase by the published inhibitor, PI-88, was also studied, and a Ki of 7.9 nM was determined. The simplicity and robustness of this method, should, not only greatly assist routine assay of heparanase activity but also could be adapted for high-throughput screening of compound libraries, with the data generated being directly comparable across studies.