174 resultados para Rigid
Resumo:
There have only been minor improvements in rigid lens material developments since silicone acrylates and fluoro-silicone acrylates were introduced over a quarter of a century ago. Although there have been enhancements in mechanical lathing technology in the rigid lens field - primarily as a result of developments in computer-controlled systems - rigid lenses are still manufactured using labour-intensive lathing processes, which is why the lens unit cost remains much higher than for disposable soft lenses.
Resumo:
Paternal postnatal depression (PND) is now recognized as a serious and prevalent problem, associated with poorer well-being and functioning of all family members. Aspects of infant temperament, sleeping and feeding perceived by parents as problematic are associated with maternal PND, however, less is known about paternal PND. This study investigated depressive symptoms (Edinburgh postnatal depression scale (EPDS)) in 219 fathers of infants aged from 1 to 24 weeks (median 7.0 weeks). Infant predictor variables were sleeping problems, feeding problems and both mother and father reported temperament. Control variables were partner’s support, other support and life events. Rigidity of parenting beliefs regarding infant regulation was also measured as a potential moderating factor. Infant feeding difficulties were associated with paternal depressive symptoms, subsuming the variance associated with both sleep problems and temperament. This relationship was not moderated by regulation beliefs. It was concluded that infant feeding is important to fathers. Fathers of infants with feeding difficulties may not be able to fulfill their idealized construction of involved fatherhood. Role incongruence may have an etiological role in paternal PND.
Resumo:
This thesis develops a novel approach to robot control that learns to account for a robot's dynamic complexities while executing various control tasks using inspiration from biological sensorimotor control and machine learning. A robot that can learn its own control system can account for complex situations and adapt to changes in control conditions to maximise its performance and reliability in the real world. This research has developed two novel learning methods, with the aim of solving issues with learning control of non-rigid robots that incorporate additional dynamic complexities. The new learning control system was evaluated on a real three degree-of-freedom elastic joint robot arm with a number of experiments: initially validating the learning method and testing its ability to generalise to new tasks, then evaluating the system during a learning control task requiring continuous online model adaptation.
Resumo:
Purpose To evaluate the influence of cone location and corneal cylinder on RGP corrected visual acuities and residual astigmatism in patients with keratoconus. Methods In this prospective study, 156 eyes from 134 patients were enrolled. Complete ophthalmologic examination including manifest refraction, Best spectacle visual acuity (BSCVA), slit-lamp biomicroscopy was performed and corneal topography analysis was done. According to the cone location on the topographic map, the patients were divided into central and paracentral cone groups. Trial RGP lenses were selected based on the flat Sim K readings and a ‘three-point touch’ fitting approach was used. Over contact lens refraction was performed, residual astigmatism (RA) was measured and best-corrected RGP visual acuities (RGPVA) were recorded. Results The mean age (±SD) was 22.1 ± 5.3 years. 76 eyes (48.6%) had central and 80 eyes (51.4%) had paracentral cone. Prior to RGP lenses fitting mean (±SD) subjective refraction spherical equivalent (SRSE), subjective refraction astigmatism (SRAST) and BSCVA (logMAR) were −5.04 ± 2.27 D, −3.51 ± 1.68 D and 0.34 ± 0.14, respectively. There were statistically significant differences between central and paracentral cone groups in mean values of SRSE, SRAST, flat meridian (Sim K1), steep meridian (Sim K2), mean K and corneal cylinder (p-values < 0.05). Comparison of BSCVA to RGPVA shows that vision has improved 0.3 logMAR by RGP lenses (p < 0.0001). Mean (±SD) RA was −0.72 ± 0.39 D. There were no statistically significant differences between RGPVAs and RAs of central and paracentral cone groups (p = 0.22) and (p = 0.42), respectively. Pearson's correlation analysis shows that there is a statistically significant relationship between corneal cylinder and BSCVA and RGPVA, However, the relationship between corneal cylinder and residual astigmatism was not significant. Conclusions Cone location has no effect on the RGP corrected visual acuities and residual astigmatism in patients with keratoconus. Corneal cylinder and Sim K values influence RGP-corrected visual acuities but do not influence residual astigmatism.
Resumo:
Recovering the motion of a non-rigid body from a set of monocular images permits the analysis of dynamic scenes in uncontrolled environments. However, the extension of factorisation algorithms for rigid structure from motion to the low-rank non-rigid case has proved challenging. This stems from the comparatively hard problem of finding a linear “corrective transform” which recovers the projection and structure matrices from an ambiguous factorisation. We elucidate that this greater difficulty is due to the need to find multiple solutions to a non-trivial problem, casting a number of previous approaches as alleviating this issue by either a) introducing constraints on the basis, making the problems nonidentical, or b) incorporating heuristics to encourage a diverse set of solutions, making the problems inter-dependent. While it has previously been recognised that finding a single solution to this problem is sufficient to estimate cameras, we show that it is possible to bootstrap this partial solution to find the complete transform in closed-form. However, we acknowledge that our method minimises an algebraic error and is thus inherently sensitive to deviation from the low-rank model. We compare our closed-form solution for non-rigid structure with known cameras to the closed-form solution of Dai et al. [1], which we find to produce only coplanar reconstructions. We therefore make the recommendation that 3D reconstruction error always be measured relative to a trivial reconstruction such as a planar one.
Resumo:
PURPOSE To quantify the influence of short-term wear of miniscleral contact lenses on the morphology of the corneo-scleral limbus, the conjunctiva, episclera and sclera. METHODS OCT images of the anterior eye were captured before, immediately following 3h of wear and then 3h after removal of a miniscleral contact lens for 10 young (27±5 years) healthy participants (neophyte rigid lens wearers). The region of analysis encompassed 1mm anterior, to 3.5mm posterior to the scleral spur. Natural diurnal variations in thickness were measured on a separate day and compensated for in subsequent analyses. RESULTS Following 3h of lens wear, statistically significant tissue thinning was observed across all quadrants, with a mean decrease in thickness of -24.1±3.6μm (p<0.001), which diminished, but did not return to baseline 3h after lens removal (-16.9±1.9μm, p<0.001). The largest tissue compression was observed in the superior quadrant (-49.9±8.5μm, p<0.01) and in the annular zone 1.5mm from the scleral spur (-48.2±5.7μm), corresponding to the approximate edge of the lens landing zone. Compression of the conjunctiva/episclera accounted for about 70% of the changes. CONCLUSIONS Optimal fitting miniscleral contact lenses worn for three hours resulted in significant tissue compression in young healthy eyes, with the greatest thinning observed superiorly, potentially due to the additional force of the eyelid, with a partial recovery of compression 3h after lens removal. Most of the morphological changes occur in the conjunctiva/episclera layers.
Resumo:
Stationary processes are random variables whose value is a signal and whose distribution is invariant to translation in the domain of the signal. They are intimately connected to convolution, and therefore to the Fourier transform, since the covariance matrix of a stationary process is a Toeplitz matrix, and Toeplitz matrices are the expression of convolution as a linear operator. This thesis utilises this connection in the study of i) efficient training algorithms for object detection and ii) trajectory-based non-rigid structure-from-motion.
Resumo:
Changes in the environment, including increased environmental complexity, require military supply units to employ a more adaptive strategy in order to enhance military agility. We extend the Lumpkin and Dess (1996) model and develop propositions that explore the interrelationships between/amongst entrepreneurial orientation (EO); opportunity recognition, evaluation and exploitation; environmental and organizational factors; and organizational performance. We propose that the innovativeness, proactiveness, and risk-taking dimensions of EO are of primary importance in identifying adaptive solutions and that these relationships are moderated by environmental factors. The autonomy and competitive aggressiveness dimensions of EO are important in implementing solutions as adaptive strategies, especially in a military context, and these relationships are moderated by organizational factors. This chapter extends existing theory developed primarily for the civilian sector to the military. Military organizations are more rigid hierarchical structures, and have different measures of performance. At an applied level, this research provides insights for military commanders that can potentially enhance agility and adaptability.
Resumo:
Inverse dynamics is the most comprehensive method that gives access to the net joint forces and moments during walking. However it is based on assumptions (i.e., rigid segments linked by ideal joints) and it is known to be sensitive to the input data (e.g., kinematic derivatives, positions of joint centres and centre of pressure, inertial parameters). Alternatively, transducers can be used to measure directly the load applied on the residuum of transfemoral amputees. So, the purpose of this study was to compare the forces and moments applied on a prosthetic knee measured directly with the ones calculated by three inverse dynamics computations - corresponding to 3 and 2 segments, and « ground reaction vector technique » - during the gait of one patient. The maximum RMSEs between the estimated and directly measured forces (i.e., 56 N) and moment (i.e., 5 N.m) were relatively small. However the dynamic outcomes of the prosthetic components (i.e., absorption of the foot, friction and limit stop of the knee) were only partially assessed with inverse dynamic methods.
Resumo:
End-stage renal failure is a life-threatening condition, often treated with home-based peritoneal dialysis (PD). PD is a demanding regimen, and the patients who practise it must make numerous lifestyle changes and learn complicated biomedical techniques. In our experience, the renal nurses who provide mostPDeducation frequently express concerns that patient compliance with their teaching is poor. These concerns are mirrored in the renal literature. It has been argued that the perceived failure of health professionals to improve compliance rates with PD regimens is because ‘compliance’ itself has never been adequately conceptualized or defined; thus, it is difficult to operationalize and quantify. This paper examines how a group of Australian renal nurses construct patient compliance with PD therapy. These empirical data illuminate how PD compliance operates in one practice setting; how it is characterized by multiple and often competing energies; and how ultimately it might be pointless to try to tame ‘compliance’ through rigid definitions and measurement, or to rigidly enforce it in PD patients. The energies involved are too fractious and might be better spent, as many of the more experienced nurses in this study argue, in augmenting the energies that do work well together to improve patient outcomes.
Resumo:
In 2004, with the increasing overloading restriction requirements of society in Anhui, a provincial comprehensive overloading transportation survey has been developed to take evaluations on overloading actuality and enforcement efficiency with the support of the World Bank. A total of six site surveys were conducted at Hefei, Fuyang, Luan, Wuhu, Huainan and Huangshan Areas with four main contents respectively: traffic volume, axle load, freight information and registration information. Via statistical analysis on the survey data, conclusions were gained that: vehicle overloading are very universal and serious problems at arterial highways in Anhui now. The traffic loads have far exceeded the designed endure capacity of highways and have caused prevalent premature pavement damage, especially for rigid pavement. The overloading trucks are unimpeded engaged in highway freight transportation actually due to the disordered overloading enforcement strategies and the deficient inspecting technologies.
Resumo:
In the critical situation of prevailing overweight transportation and crag-fast enforcement in Chinese highway networks, this paper develops a methodological framework for truck weight regulation (TWR) evaluation using System Dynamics (SD). Composed of five interrelated subsystems, the framework is able to capture the highway, vehicle and freight variables that influence the effect of TWR and transportation efficiency over time. It specifically describes the development and use of the Truck Weight Regulation Evaluating Model (TWREM) for the highway freight system in Anhui province, China. Three policy alternatives are analyzed: 1) tolerant policy approach, which allows heavy-duty freight activity to continue in its current state, and is shown to lead to nearly catastrophic results; 2) rigid policy approach, which would terminate all heavy-duty freight activities immediately, and is shown to be economically infeasible; and 3) moderate policy approach, which advocates a gradual reduction of heavy-duty freight activities to a moderate state. The simulation results shows that the moderate policy approach is the most appropriate option to solve the social and economic problems arising from the activities of the heavy-duty freight transportation in Anhui. In addition, some suggestions of TWR policy in China are also made in this paper.
Resumo:
Until recently, the hot-rolled steel members have been recognized as the most popular and widely used steel group, but in recent times, the use of cold-formed high strength steel members has rapidly increased. However, the structural behavior of light gauge high strength cold-formed steel members characterized by various buckling modes is not yet fully understood. The current cold-formed steel sections such as C- and Z-sections are commonly used because of their simple forming procedures and easy connections, but they suffer from certain buckling modes. It is therefore important that these buckling modes are either delayed or eliminated to increase the ultimate capacity of these members. This research is therefore aimed at developing a new cold-formed steel beam with two torsionally rigid rectangular hollow flanges and a slender web formed using intermittent screw fastening to enhance the flexural capacity while maintaining a minimum fabrication cost. This thesis describes a detailed investigation into the structural behavior of this new Rectangular Hollow Flange Beam (RHFB), subjected to flexural action The first phase of this research included experimental investigations using thirty full scale lateral buckling tests and twenty two section moment capacity tests using specially designed test rigs to simulate the required loading and support conditions. A detailed description of the experimental methods, RHFB failure modes including local, lateral distortional and lateral torsional buckling modes, and moment capacity results is presented. A comparison of experimental results with the predictions from the current design rules and other design methods is also given. The second phase of this research involved a methodical and comprehensive investigation aimed at widening the scope of finite element analysis to investigate the buckling and ultimate failure behaviours of RHFBs subjected to flexural actions. Accurate finite element models simulating the physical conditions of both lateral buckling and section moment capacity tests were developed. Comparison of experimental and finite element analysis results showed that the buckling and ultimate failure behaviour of RHFBs can be simulated well using appropriate finite element models. Finite element models simulating ideal simply supported boundary conditions and a uniform moment loading were also developed in order to use in a detailed parametric study. The parametric study results were used to review the current design rules and to develop new design formulae for RHFBs subjected to local, lateral distortional and lateral torsional buckling effects. Finite element analysis results indicate that the discontinuity due to screw fastening has a noticeable influence only for members in the intermediate slenderness region. Investigations into different combinations of thicknesses in the flange and web indicate that increasing the flange thickness is more effective than web thickness in enhancing the flexural capacity of RHFBs. The current steel design standards, AS 4100 (1998) and AS/NZS 4600 (1996) are found sufficient to predict the section moment capacity of RHFBs. However, the results indicate that the AS/NZS 4600 is more accurate for slender sections whereas AS 4100 is more accurate for compact sections. The finite element analysis results further indicate that the current design rules given in AS/NZS 4600 is adequate in predicting the member moment capacity of RHFBs subject to lateral torsional buckling effects. However, they were inadequate in predicting the capacities of RHFBs subject to lateral distortional buckling effects. This thesis has therefore developed a new design formula to predict the lateral distortional buckling strength of RHFBs. Overall, this thesis has demonstrated that the innovative RHFB sections can perform well as economically and structurally efficient flexural members. Structural engineers and designers should make use of the new design rules and the validated existing design rules to design the most optimum RHFB sections depending on the type of applications. Intermittent screw fastening method has also been shown to be structurally adequate that also minimises the fabrication cost. Product manufacturers and builders should be able to make use of this in their applications.
Resumo:
Many interesting phenomena have been observed in layers of granular materials subjected to vertical oscillations; these include the formation of a variety of standing wave patterns, and the occurrence of isolated features called oscillons, which alternately form conical heaps and craters oscillating at one-half of the forcing frequency. No continuum-based explanation of these phenomena has previously been proposed. We apply a continuum theory, termed the double-shearing theory, which has had success in analyzing various problems in the flow of granular materials, to the problem of a layer of granular material on a vertically vibrating rigid base undergoing vertical oscillations in plane strain. There exists a trivial solution in which the layer moves as a rigid body. By investigating linear perturbations of this solution, we find that at certain amplitudes and frequencies this trivial solution can bifurcate. The time dependence of the perturbed solution is governed by Mathieu’s equation, which allows stable, unstable and periodic solutions, and the observed period-doubling behaviour. Several solutions for the spatial velocity distribution are obtained; these include one in which the surface undergoes vertical velocities that have sinusoidal dependence on the horizontal space dimension, which corresponds to the formation of striped standing waves, and is one of the observed patterns. An alternative continuum theory of granular material mechanics, in which the principal axes of stress and rate-of-deformation are coincident, is shown to be incapable of giving rise to similar instabilities.