23 resultados para Relativity (Physics)
Resumo:
The impact-induced deposition of Al13 clusters with icosahedral structure on Ni(0 0 1) surface was studied by molecular dynamics (MD) simulation using Finnis–Sinclair potentials. The incident kinetic energy (Ein) ranged from 0.01 to 30 eV per atom. The structural and dynamical properties of Al clusters on Ni surfaces were found to be strongly dependent on the impact energy. At much lower energy, the Al cluster deposited on the surface as a bulk molecule. However, the original icosahedral structure was transformed to the fcc-like one due to the interaction and the structure mismatch between the Al cluster and Ni surface. With increasing the impinging energy, the cluster was deformed severely when it contacted the substrate, and then broken up due to dense collision cascade. The cluster atoms spread on the surface at last. When the impact energy was higher than 11 eV, the defects, such as Al substitutions and Ni ejections, were observed. The simulation indicated that there exists an optimum energy range, which is suitable for Al epitaxial growth in layer by layer. In addition, at higher impinging energy, the atomic exchange between Al and Ni atoms will be favourable to surface alloying.
Resumo:
The ability to understand and predict how thermal, hydrological,mechanical and chemical (THMC) processes interact is fundamental to many research initiatives and industrial applications. We present (1) a new Thermal– Hydrological–Mechanical–Chemical (THMC) coupling formulation, based on non-equilibrium thermodynamics; (2) show how THMC feedback is incorporated in the thermodynamic approach; (3) suggest a unifying thermodynamic framework for multi-scaling; and (4) formulate a new rationale for assessing upper and lower bounds of dissipation for THMC processes. The technique is based on deducing time and length scales suitable for separating processes using a macroscopic finite time thermodynamic approach. We show that if the time and length scales are suitably chosen, the calculation of entropic bounds can be used to describe three different types of material and process uncertainties: geometric uncertainties,stemming from the microstructure; process uncertainty, stemming from the correct derivation of the constitutive behavior; and uncertainties in time evolution, stemming from the path dependence of the time integration of the irreversible entropy production. Although the approach is specifically formulated here for THMC coupling we suggest that it has a much broader applicability. In a general sense it consists of finding the entropic bounds of the dissipation defined by the product of thermodynamic force times thermodynamic flux which in material sciences corresponds to generalized stress and generalized strain rates, respectively.
Resumo:
Multiscale hybrid simulations that bridge the nine-order-of-magnitude spatial gap between the macroscopic plasma nanotools and microscopic surface processes on nanostructured solids are described. Two specific examples of carbon nanotip-like and semiconductor quantum dot nanopatterns are considered. These simulations are instrumental in developing physical principles of nanoscale assembly processes on solid surfaces exposed to low-temperature plasmas.
Resumo:
J.W.Lindt’s Colonial man and Aborigine image from the GRAFTON ALBUM: “On chemistry and optics all does not depend, art must with these in triple union blend” (text from J.W. Lindt’s photographic backing card)...
Resumo:
This is the first of two papers that map (dis)continuities in notions of power from Aristotle to Newton to Foucault. They trace the ways in which bio-physical conceptions of power became paraphrased in social science and deployed in educational discourse on the child and curriculum from post-Newtonian times to the present. The analyses suggest that, amid ruptures in the definition, role, location and meaning given 'power' historically in various 'physical' and 'social' cosmologies, the naming of 'power' has been dependent on 'physics', on the theorization of motion across 'Western' sciences. This first paper examines some (dis)continuities in regard to histories of motion and power from Aristotelian 'natural science' to Newtonian mechanics.
Resumo:
This paper reports and discusses the principal findings of an Australian study exploring the decisions of high achieving Year 10 students about taking physics and chemistry courses (Lyons, 2003). The study used a ‘multiple worlds’ framework to explore the diverse background characteristics that previous quantitative research had shown were implicated in these decisions. Based on analyses of questionnaire and interview data, the study found that the students’ decisions involved the complex negotiation of a number of cultural characteristics within their school science and family worlds. Many of the students regarded junior high school science as irrelevant, uninteresting and difficult, leaving them with few intrinsic reasons for enrolling in senior science courses. The study found that decisions about taking physical science courses were associated with the resources of cultural and social capital within their families, and the degree to which these resources were congruent with the advantages of choosing these courses. The paper concludes that the low intrinsic value of school science and the erosion of its strategic value contribute to the reluctance of students to choose physical science courses in the senior school.