73 resultados para Regimiento 8 de Tanques de Magdalena
Resumo:
Introduction—Human herpesvirus 8 (HHV8) is necessary for Kaposi sarcoma (KS) to develop, but whether peripheral blood viral load is a marker of KS burden (total number of KS lesions), KS progression (the rate of eruption of new KS lesions), or both is unclear. We investigated these relationships in persons with AIDS. Methods—Newly diagnosed patients with AIDS-related KS attending Mulago Hospital, in Kampala, Uganda, were assessed for KS burden and progression by questionnaire and medical examination. Venous blood samples were taken for HHV8 load measurements by PCR. Associations were examined with odds ratio (OR) and 95% confidence intervals (CI) from logistic regression models and with t-tests. Results—Among 74 patients (59% men), median age was 34.5 years (interquartile range [IQR], 28.5-41). HHV8 DNA was detected in 93% and quantified in 77% patients. Median virus load was 3.8 logs10/106 peripheral blood cells (IQR 3.4-5.0) and was higher in men than women (4.4 vs. 3.8 logs; p=0.04), in patients with faster (>20 lesions per year) than slower rate of KS lesion eruption (4.5 vs. 3.6 logs; p<0.001), and higher, but not significantly, among patients with more (>median [20] KS lesions) than fewer KS lesions (4.4 vs. 4.0 logs; p=0.16). HHV8 load was unrelated to CD4 lymphocyte count (p=0.23). Conclusions—We show significant association of HHV8 load in peripheral blood with rate of eruption of KS lesions, but not with total lesion count. Our results suggest that viral load increases concurrently with development of new KS lesions.
Resumo:
In the structure of the hydrated quinolinium salt of ferron (8-hydroxy-7-iodoquinoline-5-sulfonic acid), C9H7N+ C9H5INO4S- . 0.8H2O, the quinolinium cation is fully disordered over two sites (occupancy factors 0.63 and 0.37) lying essentially within a common plane and with the ferron anions form pi-pi-associated stacks down the b axis (minimum ring centroid separation = 3.462(6)Ang.]. The cations and anions are linked into chains extending along c through hydroxyl O-H...O and quinolinium N-H...O hydrogen bonds to sulfonate O-atom acceptors which are also involved in water O-H...O hydrogen-bonding interactions down b giving a two-dimensional network structure.
Resumo:
The assembly of retroviruses such as HIV-1 is driven by oligomerization of their major structural protein, Gag. Gag is a multidomain polyprotein including three conserved folded domains: MA (matrix), CA (capsid) and NC (nucleocapsid)(1). Assembly of an infectious virion proceeds in two stages(2). In the first stage, Gag oligomerization into a hexameric protein lattice leads to the formation of an incomplete, roughly spherical protein shell that buds through the plasma membrane of the infected cell to release an enveloped immature virus particle. In the second stage, cleavage of Gag by the viral protease leads to rearrangement of the particle interior, converting the non-infectious immature virus particle into a mature infectious virion. The immature Gag shell acts as the pivotal intermediate in assembly and is a potential target for anti-retroviral drugs both in inhibiting virus assembly and in disrupting virus maturation(3). However, detailed structural information on the immature Gag shell has not previously been available. For this reason it is unclear what protein conformations and interfaces mediate the interactions between domains and therefore the assembly of retrovirus particles, and what structural transitions are associated with retrovirus maturation. Here we solve the structure of the immature retroviral Gag shell from Mason-Pfizer monkey virus by combining cryo-electron microscopy and tomography. The 8-angstrom resolution structure permits the derivation of a pseudo-atomic model of CA in the immature retrovirus, which defines the protein interfaces mediating retrovirus assembly. We show that transition of an immature retrovirus into its mature infectious form involves marked rotations and translations of CA domains, that the roles of the amino-terminal and carboxy-terminal domains of CA in assembling the immature and mature hexameric lattices are exchanged, and that the CA interactions that stabilize the immature and mature viruses are almost completely distinct.
Resumo:
Objectives The aim of this study was to evaluate the role of cardiac K+ channel gene variants in families with atrial fibrillation (AF). Background The K+ channels play a major role in atrial repolarization but single mutations in cardiac K+ channel genes are infrequently present in AF families. The collective effect of background K+ channel variants of varying prevalence and effect size on the atrial substrate for AF is largely unexplored. Methods Genes encoding the major cardiac K+ channels were resequenced in 80 AF probands. Nonsynonymous coding sequence variants identified in AF probands were evaluated in 240 control subjects. Novel variants were characterized using patch-clamp techniques and in silico modeling was performed using the Courtemanche atrial cell model. Results Nineteen nonsynonymous variants in 9 genes were found, including 11 rare variants. Rare variants were more frequent in AF probands (18.8% vs. 4.2%, p < 0.001), and the mean number of variants was greater (0.21 vs. 0.04, p < 0.001). The majority of K+ channel variants individually had modest functional effects. Modeling simulations to evaluate combinations of K+ channel variants of varying population frequency indicated that simultaneous small perturbations of multiple current densities had nonlinear interactions and could result in substantial (>30 ms) shortening or lengthening of action potential duration as well as increased dispersion of repolarization. Conclusions Families with AF show an excess of rare functional K+ channel gene variants of varying phenotypic effect size that may contribute to an atrial arrhythmogenic substrate. Atrial cell modeling is a useful tool to assess epistatic interactions between multiple variants.
Resumo:
Multiple sclerosis (MS) is a serious cause of neurological disability among young adults. The clinical course remains difficult to predict, and the pathogenesis of the disease is still modestly understood. Autoimmunity is thought to be a key aspect of the disease, with autoreactive T cells thought to mediate central nervous system (CNS) inflammation to some extent. Toll-like receptors are known to mediate cellular recognition of pathogens by way of patterns of molecular presentation. Toll-like receptor 3 is coded by the gene TLR3 and is recognized as an important factor in virus recognition and is known to be involved in the expression of neuroprotective mediators. We set out to investigate two variations within the TLR3 gene, an 8 bp insertion-deletion \[-/A](8) and a single base-pair variation C1236T, in subjects with MS and matched healthy controls to determine whether significant differences exist in these markers in an Australian population. We used capillary gel electrophoresis and TaqMan genotyping assay techniques to resolve genotypes for each marker, respectively. Our work found no significant difference between frequencies for TLR3 \[-/A](8) by genotype (chi(2)=1.03, p=0.60) or allele (chi(2)=1.09, p=0.30). Similarly, we found no evidence for the association of TLR3 C1236T by genotype (chi(2)=0.35, p=0.84) or allele frequency (chi(2)=0.31, p=0.58). This work reveals no evidence to suggest that these markers are associated with MS in the tested population. Although the role of TLR3 and the wider toll-like receptor family remain significant in neurological and CNS inflammatory disorders, our current work does not support a role for the two tested variants in this gene with regard to MS susceptibility.
Resumo:
Migraine is a common, genetically influenced neurovascular disorder. The dopamine transporter gene is a candidate for migraine association studies. This study tested a functionally linked variable number tandem repeat (VNTR) in intron 8 of the dopamine transporter gene (DATInt8) in 550 migraine cases (401 with aura, 149 without aura) and 550 non-migraine controls. Chi-squared analysis of the DATInt8 revealed that the allele and genotype frequency distributions for migraine cases (including subtype analysis) and controls were not different (P > 0.1). These findings offer no evidence for an association of the DATInt8 with migraine with and without aura and therefore do not implicate the dopamine transporter gene as a modifier of migraine risk.