16 resultados para Rb-
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Repository Napier (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- Adam Mickiewicz University Repository (1)
- AMS Campus - Alm@DL - Università di Bologna (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (12)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (29)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (23)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (8)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (26)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (54)
- CentAUR: Central Archive University of Reading - UK (11)
- Center for Jewish History Digital Collections (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (218)
- Cochin University of Science & Technology (CUSAT), India (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (13)
- Digital Archives@Colby (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (22)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (18)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (5)
- Indian Institute of Science - Bangalore - Índia (85)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (5)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (12)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (11)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (129)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (26)
- Queensland University of Technology - ePrints Archive (16)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositorio Institucional de la Universidad Nacional Agraria (6)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (134)
- SAPIENTIA - Universidade do Algarve - Portugal (3)
- Universidad del Rosario, Colombia (30)
- Universidade Federal do Pará (12)
- Universidade Federal do Rio Grande do Norte (UFRN) (10)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (6)
- University of Michigan (2)
- University of Queensland eSpace - Australia (1)
Resumo:
The increased availability of image capturing devices has enabled collections of digital images to rapidly expand in both size and diversity. This has created a constantly growing need for efficient and effective image browsing, searching, and retrieval tools. Pseudo-relevance feedback (PRF) has proven to be an effective mechanism for improving retrieval accuracy. An original, simple yet effective rank-based PRF mechanism (RB-PRF) that takes into account the initial rank order of each image to improve retrieval accuracy is proposed. This RB-PRF mechanism innovates by making use of binary image signatures to improve retrieval precision by promoting images similar to highly ranked images and demoting images similar to lower ranked images. Empirical evaluations based on standard benchmarks, namely Wang, Oliva & Torralba, and Corel datasets demonstrate the effectiveness of the proposed RB-PRF mechanism in image retrieval.