154 resultados para Rank and file unionism
Resumo:
Traditional area-based matching techniques make use of similarity metrics such as the Sum of Absolute Differences(SAD), Sum of Squared Differences (SSD) and Normalised Cross Correlation (NCC). Non-parametric matching algorithms such as the rank and census rely on the relative ordering of pixel values rather than the pixels themselves as a similarity measure. Both traditional area-based and non-parametric stereo matching techniques have an algorithmic structure which is amenable to fast hardware realisation. This investigation undertakes a performance assessment of these two families of algorithms for robustness to radiometric distortion and random noise. A generic implementation framework is presented for the stereo matching problem and the relative hardware requirements for the various metrics investigated.
Resumo:
The mining environment, being complex, irregular and time varying, presents a challenging prospect for stereo vision. For this application, speed, reliability, and the ability to produce a dense depth map are of foremost importance. This paper assesses the suitability of a number of matching techniques for use in a stereo vision sensor for close range scenes consisting primarily of rocks. These include traditional area-based matching metrics, and non-parametric transforms, in particular, the rank and census transforms. Experimental results show that the rank and census transforms exhibit a number of clear advantages over area-based matching metrics, including their low computational complexity, and robustness to certain types of distortion.
Resumo:
The rank and census are two filters based on order statistics which have been applied to the image matching problem for stereo pairs. Advantages of these filters include their robustness to radiometric distortion and small amounts of random noise, and their amenability to hardware implementation. In this paper, a new matching algorithm is presented, which provides an overall framework for matching, and is used to compare the rank and census techniques with standard matching metrics. The algorithm was tested using both real stereo pairs and a synthetic pair with ground truth. The rank and census filters were shown to significantly improve performance in the case of radiometric distortion. In all cases, the results obtained were comparable to, if not better than, those obtained using standard matching metrics. Furthermore, the rank and census have the additional advantage that their computational overhead is less than these metrics. For all techniques tested, the difference between the results obtained for the synthetic stereo pair, and the ground truth results was small.
Resumo:
Digital human modeling (DHM) systems underwent significant development within the last years. They achieved constantly growing importance in the field of ergonomic workplace design, product development, product usability, ergonomic research, ergonomic education, audiovisual marketing and the entertainment industry. They help to design ergonomic products as well as healthy and safe socio-technical work systems. In the domain of scientific DHM systems, no industry specific standard interfaces are defined which could facilitate the exchange of 3D solid body data, anthropometric data or motion data. The focus of this article is to provide an overview of requirements for a reliable data exchange between different DHM systems in order to identify suitable file formats. Examples from the literature are discussed in detail. Methods: As a first step a literature review is conducted on existing studies and file formats for exchanging data between different DHM systems. The found file formats can be structured into different categories: static 3D solid body data exchange, anthropometric data exchange, motion data exchange and comprehensive data exchange. Each file format is discussed and advantages as well as disadvantages for the DHM context are pointed out. Case studies are furthermore presented, which show first approaches to exchange data between DHM systems. Lessons learnt are shortly summarized. Results: A selection of suitable file formats for data exchange between DHM systems is determined from the literature review.
Resumo:
Organic compounds in Australian coal seam gas produced water (CSG water) are poorly understood despite their environmental contamination potential. In this study, the presence of some organic substances is identified from government-held CSG water-quality data from the Bowen and Surat Basins, Queensland. These records revealed the presence of polycyclic aromatic hydrocarbons (PAHs) in 27% of samples of CSG water from the Walloon Coal Measures at concentrations <1 µg/L, and it is likely these compounds leached from in situ coals. PAHs identified from wells include naphthalene, phenanthrene, chrysene and dibenz[a,h]anthracene. In addition, the likelihood of coal-derived organic compounds leaching to groundwater is assessed by undertaking toxicity leaching experiments using coal rank and water chemistry as variables. These tests suggest higher molecular weight PAHs (including benzo[a]pyrene) leach from higher rank coals, whereas lower molecular weight PAHs leach at greater concentrations from lower rank coal. Some of the identified organic compounds have carcinogenic or health risk potential, but they are unlikely to be acutely toxic at the observed concentrations which are almost negligible (largely due to the hydrophobicity of such compounds). Hence, this study will be useful to practitioners assessing CSG water related environmental and health risk.
Resumo:
Evolutionary algorithms are playing an increasingly important role as search methods in cognitive science domains. In this study, methodological issues in the use of evolutionary algorithms were investigated via simulations in which procedures were systematically varied to modify the selection pressures on populations of evolving agents. Traditional roulette wheel, tournament, and variations of these selection algorithms were compared on the “needle-in-a-haystack” problem developed by Hinton and Nowlan in their 1987 study of the Baldwin effect. The task is an important one for cognitive science, as it demonstrates the power of learning as a local search technique in smoothing a fitness landscape that lacks gradient information. One aspect that has continued to foster interest in the problem is the observation of residual learning ability in simulated populations even after long periods of time. Effective evolutionary algorithms balance their search effort between broad exploration of the search space and in-depth exploitation of promising solutions already found. Issues discussed include the differential effects of rank and proportional selection, the tradeoff between migration of populations towards good solutions and maintenance of diversity, and the development of measures that illustrate how each selection algorithm affects the search process over generations. We show that both roulette wheel and tournament algorithms can be modified to appropriately balance search between exploration and exploitation, and effectively eliminate residual learning in this problem.
Resumo:
Aim Simulation forms an increasingly vital component of clinical skills development in a wide range of professional disciplines. Simulation of clinical techniques and equipment is designed to better prepare students for placement by providing an opportunity to learn technical skills in a “safe” academic environment. In radiotherapy training over the last decade or so this has predominantly comprised treatment planning software and small ancillary equipment such as mould room apparatus. Recent virtual reality developments have dramatically changed this approach. Innovative new simulation applications and file processing and interrogation software have helped to fill in the gaps to provide a streamlined virtual workflow solution. This paper outlines the innovations that have enabled this, along with an evaluation of the impact on students and educators. Method Virtual reality software and workflow applications have been developed to enable the following steps of radiation therapy to be simulated in an academic environment: CT scanning using a 3D virtual CT scanner simulation; batch CT duplication; treatment planning; 3D plan evaluation using a virtual linear accelerator; quantitative plan assessment, patient setup with lasers; and image guided radiotherapy software. Results Evaluation of the impact of the virtual reality workflow system highlighted substantial time saving for academic staff as well as positive feedback from students relating to preparation for clinical placements. Students valued practice in the “safe” environment and the opportunity to understand the clinical workflow ahead of clinical department experience. Conclusion Simulation of most of the radiation therapy workflow and tasks is feasible using a raft of virtual reality simulation applications and supporting software. Benefits of this approach include time-saving, embedding of a case-study based approach, increased student confidence, and optimal use of the clinical environment. Ongoing work seeks to determine the impact of simulation on clinical skills.
Resumo:
In this paper we extend the ideas of Brugnano, Iavernaro and Trigiante in their development of HBVM($s,r$) methods to construct symplectic Runge-Kutta methods for all values of $s$ and $r$ with $s\geq r$. However, these methods do not see the dramatic performance improvement that HBVMs can attain. Nevertheless, in the case of additive stochastic Hamiltonian problems an extension of these ideas, which requires the simulation of an independent Wiener process at each stage of a Runge-Kutta method, leads to methods that have very favourable properties. These ideas are illustrated by some simple numerical tests for the modified midpoint rule.
Resumo:
A fundamental problem faced by stereo vision algorithms is that of determining correspondences between two images which comprise a stereo pair. This paper presents work towards the development of a new matching algorithm, based on the rank transform. This algorithm makes use of both area-based and edge-based information, and is therefore referred to as a hybrid algorithm. In addition, this algorithm uses a number of matching constraints,including the novel rank constraint. Results obtained using a number of test pairs show that the matching algorithm is capable of removing a significant proportion of invalid matches. The accuracy of matching in the vicinity of edges is also improved.
Resumo:
Active Appearance Models (AAMs) employ a paradigm of inverting a synthesis model of how an object can vary in terms of shape and appearance. As a result, the ability of AAMs to register an unseen object image is intrinsically linked to two factors. First, how well the synthesis model can reconstruct the object image. Second, the degrees of freedom in the model. Fewer degrees of freedom yield a higher likelihood of good fitting performance. In this paper we look at how these seemingly contrasting factors can complement one another for the problem of AAM fitting of an ensemble of images stemming from a constrained set (e.g. an ensemble of face images of the same person).
Resumo:
For clustered survival data, the traditional Gehan-type estimator is asymptotically equivalent to using only the between-cluster ranks, and the within-cluster ranks are ignored. The contribution of this paper is two fold: - (i) incorporating within-cluster ranks in censored data analysis, and; - (ii) applying the induced smoothing of Brown and Wang (2005, Biometrika) for computational convenience. Asymptotic properties of the resulting estimating functions are given. We also carry out numerical studies to assess the performance of the proposed approach and conclude that the proposed approach can lead to much improved estimators when strong clustering effects exist. A dataset from a litter-matched tumorigenesis experiment is used for illustration.
Resumo:
A 'pseudo-Bayesian' interpretation of standard errors yields a natural induced smoothing of statistical estimating functions. When applied to rank estimation, the lack of smoothness which prevents standard error estimation is remedied. Efficiency and robustness are preserved, while the smoothed estimation has excellent computational properties. In particular, convergence of the iterative equation for standard error is fast, and standard error calculation becomes asymptotically a one-step procedure. This property also extends to covariance matrix calculation for rank estimates in multi-parameter problems. Examples, and some simple explanations, are given.
Resumo:
“When cultural life is re-defined as a perpetual round of entertainments, when serious public conversation becomes a form of baby talk, when, in short, a people become an audience and their public business a vaudeville act, then a nation finds itself at risk.” (Postman) The dire tones of Postman quoted in Janet Cramer’s Media, History, Society: A Cultural History of US Media introduce one view that she canvasses, in the debate of the moment, as to where popular culture is heading in the digital age. This is canvassed, less systematically, in Thinking Popular Culture: War Terrorism and Writing by Tara Brabazon, who for example refers to concerns about a “crisis of critical language” that is bothering professionals—journalists and academics or elsewhere—and deplores the advent of the Internet, as a “flattening of expertise in digital environments”.
Resumo:
Objective: This paper explores the effects of perceived stage of cancer (PSOC) on carers' anxiety and depression during the patients' final year. Methods: A consecutive sample of patients and carers (N=98) were surveyed at regular intervals regarding PSOC, and anxiety and depression using the Hospital Anxiety and Depression Scale. Means were compared by gender using the Mann-Whitney U-test. The chi-square was used to analyse categorical data. Agreement between carers' and patients' PSOC was estimated using kappa statistics. Correlations between carers' PSOC and their anxiety and depression were calculated using the Spearman's rank correlation. Results: Over time, an increasing proportion of carers reported that the cancer was advanced, culminating at 43% near death. Agreement regarding PSOC was fair (kappa=0.29-0.34) until near death (kappa=0.21). Carers' anxiety increased over the year; depression increased in the final 6 months. Females were more anxious (p=0.049, 6 months; p=0.009, 3 months) than males, and more depressed until 1 month to death. The proportion of carers reporting moderate-severe anxiety almost doubled over the year to 27%, with more females in this category at 6 months (p=0.05). Carers with moderate-severe depression increased from 6 to 15% over the year. Increased PSOC was weakly correlated with increased anxiety and depression. Conclusions: Carers' anxiety exceeded depression in severity during advanced cancer. Females generally experienced greater anxiety and depression. Carers were more realistic than patients regarding the ultimate outcome, which was reflected in their declining mental health, particularly near the end.
Resumo:
Forensic analysis requires the acquisition and management of many different types of evidence, including individual disk drives, RAID sets, network packets, memory images, and extracted files. Often the same evidence is reviewed by several different tools or examiners in different locations. We propose a backwards-compatible redesign of the Advanced Forensic Formatdan open, extensible file format for storing and sharing of evidence, arbitrary case related information and analysis results among different tools. The new specification, termed AFF4, is designed to be simple to implement, built upon the well supported ZIP file format specification. Furthermore, the AFF4 implementation has downward comparability with existing AFF files.