33 resultados para Radioisotopes in botany.
Resumo:
Extrapulmonary small cell and small cell neuroendocrine tumors of unknown primary site are, in general, aggressive neoplasms with a short median survival. Like small cell lung cancer (SCLC), they often are responsive to chemotherapy and radiotherapy. Small cell lung cancer and well differentiated neuroendocrine carcinomas of the gastrointestinal tract and pancreas tend to express somatostatin receptors. These tumors may be localized in patients by scintigraphic imaging using radiolabeled somatostatin analogues. A patient with an anaplastic neuroendocrine small cell tumor arising on a background of multiple endocrine neoplasia type 1 syndrome is reported. The patient had a known large pancreatic gastrinoma and previously treated parathyroid adenopathy. At presentation, there was small cell cancer throughout the liver and skeleton. Imaging with a radiolabeled somatostatin analogue, 111In- pentetreotide (Mallinckrodt Medical B. V., Petten, Holland), revealed all sites of disease detected by routine biochemical and radiologic methods. After six cycles of chemotherapy with doxorubicin, cyclophosphamide, and etoposide, there was almost complete clearance of the metastatic disease. 111In-pentetreotide scintigraphy revealed uptake consistent with small areas of residual disease in the liver, the abdomen (in mesenteric lymph nodes), and posterior thorax (in a rib). The primary gastrinoma present before the onset of the anaplastic small cell cancer showed no evidence of response to the treatment. The patient remained well for 1 year and then relapsed with brain, lung, liver, and skeletal metastases. Despite an initial response to salvage radiotherapy and chemotherapy with carboplatin and dacarbazine, the patient died 6 months later.
Resumo:
Experimental evidence suggests that somatostatin analogues may have a role to play in the management of lung tumours. We evaluated membrane preparations of nine small cell lung cancer (SCLC) cell lines and of tumour samples from 3 patients with non-small cell lung cancer (NSCLC), 1 patient with an atypical carcinoid and another with a bronchial carcinoid for the presence of specific binding sites for RC-160, a potent growth inhibitory octapeptide analogue of somatostatin. Specific binding was noted on six of nine SCLC lines. Radio-receptor assay on the cell line NCI H 69 showed evidence of two specific binding sites for RC-160, one with high affinity and the other with low affinity. Binding sites were also found on all five tumour samples. Scatchard analysis indicated the presence of a single class of receptors with high affinity in each case. Histological assessment of the resected specimens before binding assay showed them to be comprised of tumour cells and necrotic tissue, stroma and/or inflammatory cells. Therefore, the specific binding of RC-160 may be to tissues other than the tumour cells. In 3 patients, from whom the tumour samples were obtained, radiolabelled somatostatin analogue scintigraphy using [111In] pentetreotide was performed prior to surgery. In all cases, the radiolabel localised the disease. This study demonstrates the presence of specific binding sites for RC-160 in SCLC. Furthermore, the detection of specific binding in vitro and in vivo in NSCLC and intrapulmonary carcinoids demonstrates that these tumours contain cells which express specific binding sites for somatostatin. These results suggest that RC-160 may have a role toplay as a therapeutic agent in lung cancer.
Resumo:
It is known that 22-nucleotide (nt) microRNAs (miRNAs) derived from asymmetric duplexes trigger phased small-interfering RNA (phasiRNA) production from complementary targets. Here we investigate the efficacy of 22-nt artificial miRNA (amiRNA)-mediated RNA silencing relative to conventional hairpin RNA (hpRNA) and 21-nt amiRNA-mediated RNA silencing. CHALCONE SYNTHASE (CHS) was selected as a target in Arabidopsis thaliana due to the obvious and non-lethal loss of anthocyanin accumulation upon widespread RNA silencing. Over-expression of CHS in the pap1-D background facilitated visual detection of both local and systemic RNA silencing. RNA silencing was initiated in leaf tissues from hpRNA and amiRNA plant expression vectors under the control of an Arabidopsis RuBisCo small subunit 1A promoter (SSU). In this system, hpRNA expression triggered CHS silencing in most leaf tissues but not in roots or seed coats. Similarly, 21-nt amiRNA expression from symmetric miRNA/miRNA* duplexes triggered CHS silencing in all leaf tissues but not in roots or seed coats. However, 22-nt amiRNA expression from an asymmetric duplex triggered CHS silencing in all tissues, including roots and seed coats, in the majority of plant lines. This widespread CHS silencing required RNA-DEPENDENT RNA POLYMERASE6-mediated accumulation of phasiRNAs from the endogenous CHS transcript. These results demonstrate the efficacy of asymmetric 22-nt amiRNA-directed RNA silencing and associated phasiRNA production and activity, in mediating widespread RNA silencing of an endogenous target gene. Asymmetric 22-nt amiRNA-directed RNA silencing requires little modification of existing amiRNA technology and is expected to be effective in suppressing other genes and/or members of gene families.
Resumo:
RNA-dependent RNA polymerase (RDR) activities were readily detected in extracts from cauliflower and broccoli florets, Arabidopsis thaliana (L.) Heynh callus tissue and broccoli nuclei. The synthesis of complementary RNA (cRNA) was independent of a RNA primer, whether or not the primer contained a 3′ terminal 2′-O-methyl group or was phosphorylated at the 5′ terminus. cRNA synthesis in plant extracts was not affected by loss-of-function mutations in the DICER-LIKE (DCL) proteins DCL2, DCL3, and DCL4, indicating that RDRs function independently of these DCL proteins. A loss-of-function mutation in RDR1, RDR2 or RDR6 did not significantly reduce the amount of cRNA synthesis. This indicates that these RDRs did not account for the bulk RDR activities in plant extracts, and suggest that either the individual RDRs each contribute a fraction of polymerase activity or another RDR(s) is predominant in the plant extract. © CSIRO 2008.
Resumo:
A suite of plant expression vectors (pPLEX), constructed from the gene regulation signals from subterranean clover stunt virus (SCSV) genome, has previously been used in dicot transformation for a variety of applications in plant biotechnology. To assess their use for the transformation of monocots, a number of modifications were made to the basic vector series and assessed in rice. In their unmodified forms, the SCSV promoters directed low levels of gene expression, however, insertion of an intron between the promoter and the transgene open reading frame (analogous to the rice actin and maize ubiquitin promoter systems) increased transgene expression 50-fold. The expression patterns from the intron-modified SCSV (segments 4 and 7) promoters were very similar to those directed by the actin or ubiquitin promoters. All promoter systems investigated directed expression that appeared to be constitutive within leaf tissue, and localised to the epidermal and vascular tissues of the root. The pPLEX vectors described here are an important counterpart to the dicot pPLEX series and have the potential to be useful in monocot research and biotechnology.
Resumo:
A major challenge in the post-genome era of plant biology is to determine the functions of all genes in the plant genome. A straightforward approach to this problem is to reduce or knockout expression of a gene with the hope of seeing a phenotype that is suggestive of its function. Insertional mutagenesis is a useful tool for this type of study but is limited by gene redundancy, lethal knockouts, non-tagged mutants, and the inability to target the inserted element to a specific gene. The efficacy of gene silencing in plants using inverted-repeat transgene constructs that encode a hairpin RNA (hpRNA) has been demonstrated by a number of groups, and has several advantages over insertional mutagenesis. In this paper we describe two improved pHellsgate vectors that facilitate rapid generation of hpRNA-encoding constructs, pHellsgate 4 allows the production of an hpRNA construct in a single step from a single polymerase chain reaction product, while pHellsgate 8 requires a two-step process via an intermediate vector. We show that these vectors are effective at silencing three endogenous genes in Arabidopsis, FLOWERING LOCUS C, PHYTOENE DESATURASE and ETHYLENE INSENSITIVE 2. We also show that a construct of sequences from two genes silences both genes.
Resumo:
Post-transcriptional silencing of plant genes using anti-sense or co-suppression constructs usually results in only a modest proportion of silenced individuals. Recent work has demonstrated the potential for constructs encoding self-complementary 'hairpin' RNA (hpRNA) to efficiently silence genes. In this study we examine design rules for efficient gene silencing, in terms of both the proportion of independent transgenic plants showing silencing, and the degree of silencing. Using hpRNA constructs containing sense/anti-sense arms ranging from 98 to 853 nt gave efficient silencing in a wide range of plant species, and inclusion of an intron in these constructs had a consistently enhancing effect. Intron-containing constructs (ihpRNA) generally gave 90-100% of independent transgenic plants showing silencing. The degree of silencing with these constructs was much greater than that obtained using either co-suppression or anti-sense constructs. We have made a generic vector, pHANNIBAL, that allows a simple, single PCR product from a gene of interest to be easily converted into a highly effective ihpRNA silencing construct. We have also created a high-throughput vector, pHELLSGATE, that should facilitate the cloning of gene libraries or large numbers of defined genes, such as those in EST collections, using an in vitro recombinase system. This system may facilitate the large-scale determination and discovery of plant gene functions in the same way as RNAi is being used to examine gene function in Caenorhabditis elegans.
Resumo:
In this paper we discuss the social, economic and institutional aspects of the development of carbon management systems within Australia's tropical savannas. Land-use values in savanna landscapes are changing as a result of changing economic markets, greater recognition of native title, and growing social demands and expectations for tourism, recreation and conservation. In addition, there is increasing interest in developing markets and policy arrangements for greenhouse gas abatement, carbon sequestration and carbon trade in savannas. We argue that for carbon management to lead to national greenhouse outcomes, attention must be paid to social, economic and institutional issues in environmental planning and policy arrangements. From an economic perspective, the financial impact of carbon management on savanna enterprises will depend on appropriate and available policy mechanisms, unit price for carbon, landscape condition, existing management strategies and abatement measurements used. Local social and cultural features of communities and regions may enhance or constrain the implementation of carbon abatement strategies, depending on how they are perceived. In terms of institutional arrangements, policies and plans must support and enable carbon management. We identify three areas that require priority investigation and adjustment: regional planning arrangements, property rights, and rules for accounting at enterprise and regional scales. We conclude that the best potential for managing for carbon will be achieved while managing for range of other natural resource management outcomes, especially where managing for carbon delivers collateral benefits to enterprises.
Resumo:
Background and Aims Successful cryopreservation of bryophytes is linked to intrinsic desiccation tolerance and survival can be enhanced by pre-treatment with abscisic acid (ABA) and sucrose. The pioneer moss Ditrichum plumbicola is naturally subjected to desiccation in the field but showed unexpectedly low survival of cryopreservation, as well as a poor response to pre-treatment. The effects of the cryopreservation protocol on protonemata of D. plumbicola were investigated in order to explore possible relationships between the production in vitro of cryopreservation-tolerant asexual propagules and the reproductive biology of D. plumbicola in nature. Methods Protonemata were prepared for cryopreservation using a four-step protocol involving encapsulation in sodium alginate, pre-treatment for 2 weeks with ABA and sucrose, desiccation for 6 h and rapid freezing in liquid nitrogen. After each stage, protonemata were prepared for light and electron microscopy and growth on standard medium was monitored. Further samples were prepared for light and electron microscopy at intervals over a 24-h period following removal from liquid nitrogen and re-hydration. Key Results Pre-treatment with ABA and sucrose caused dramatic changes to the protonemata. Growth was arrested and propagules induced with pronounced morphological and cytological changes. Most cells died, but those that survived were characterized by thick, deeply pigmented walls, numerous small vacuoles and lipid droplets in their cytoplasm. Desiccation and cryopreservation elicited no dramatic cytological changes. Cells returned to their pre-dehydration and cryopreservation state within 2 h of re-hydration and/or removal from liquid nitrogen. Regeneration was normal once the ABA/sucrose stimulus was removed. Conclusions The ABA/sucrose pre-treatment induced the formation of highly desiccation- and cryopreservation-tolerant propagules from the protonemata of D. plumbicola. This parallels behaviour in the wild, where highly desiccation-tolerant rhizoids function as perennating organs allowing the moss to endure extreme environmental conditions. An involvement of endogenous ABA in the desiccation tolerance of D. plumbicola is suggested.
Resumo:
MADS-box genes similar to Arabidopsis SHORT VEGETATIVE PHASE (SVP) have been implicated in the regulation of flowering in annual species and bud dormancy in perennial species. Kiwifruit (Actinidia spp.) are woody perennial vines where bud dormancy and out-growth affect flower development. To determine the role of SVP-like genes in dormancy and flowering of kiwifruit, four MADS-box genes with homology to Arabidopsis SVP, designated SVP1, SVP2, SVP3, and SVP4, have been identified and analysed in kiwifruit and functionally characterized in Arabidopsis. Phylogenetic analysis indicate that these genes fall into different sub-clades within the SVP-like gene group, suggesting distinct functions. Expression was generally confined to vegetative tissues, and increased transcript accumulation in shoot buds over the winter period suggests a role for these genes in bud dormancy. Down-regulation before flower differentiation indicate possible roles as floral repressors. Over-expression and complementation studies in Arabidopsis resulted in a range of floral reversion phenotypes arising from interactions with Arabidopsis MADS-box proteins, but only SVP1 and SVP3 were able to complement the svp mutant. These results suggest that the kiwifruit SVP-like genes may have distinct roles during bud dormancy and flowering.
Resumo:
Budbreak in kiwifruit (Actinidia deliciosa) can be poor in locations that have warm winters with insufficient winter chilling. Kiwifruit vines are often treated with the dormancy-breaking chemical hydrogen cyanamide (HC) to increase and synchronize budbreak. This treatment also offers a tool to understand the processes involved in budbreak. A genomics approach is presented here to increase our understanding of budbreak in kiwifruit. Most genes identified following HC application appear to be associated with responses to stress, but a number of genes appear to be associated with the reactivation of growth. Three patterns of gene expression were identified: Profile 1, an HC-induced transient activation; Profile 2, an HC-induced transient activation followed by a growth-related activation; and Profile 3, HC- and growth-repressed. One group of genes that was rapidly up-regulated in response to HC was the glutathione S-transferase (GST) class of genes, which have been associated with stress and signalling. Previous budbreak studies, in three other species, also report up-regulated GST expression. Phylogenetic analysis of these GSTs showed that they clustered into two sub-clades, suggesting a strong correlation between their expression and budbreak across species.
Resumo:
The composition of carotenoids, along with anthocyanins and chlorophyll, accounts for the distinctive range of colour found in the Actinidia (kiwifruit) species. Lutein and beta-carotene are the most abundant carotenoids found during fruit development, with beta-carotene concentration increasing rapidly during fruit maturation and ripening. In addition, the accumulation of beta-carotene and lutein is influenced by the temperature at which harvested fruit are stored. Expression analysis of carotenoid biosynthetic genes among different genotypes and fruit developmental stages identified Actinidia lycopene beta-cyclase (LCY-β) as the gene whose expression pattern appeared to be associated with both total carotenoid and beta-carotene accumulation. Phytoene desaturase (PDS) expression was the least variable among the different genotypes, while zeta carotene desaturase (ZDS), beta-carotene hydroxylase (CRH-β), and epsilon carotene hydroxylase (CRH-ε) showed some variation in gene expression. The LCY-β gene was functionally tested in bacteria and shown to convert lycopene and delta-carotene to beta-carotene and alpha-carotene respectively. This indicates that the accumulation of beta-carotene, the major carotenoid in these kiwifruit species, appears to be controlled by the level of expression of LCY-β gene.
Resumo:
SVP-like MADS domain transcription factors have been shown to regulate flowering time and both inflorescence and flower development in annual plants, while having effects on growth cessation and terminal bud formation in perennial species. Previously, four SVP genes were described in woody perennial vine kiwifruit (Actinidia spp.), with possible distinct roles in bud dormancy and flowering. Kiwifruit SVP3 transcript was confined to vegetative tissues and acted as a repressor of flowering as it was able to rescue the Arabidopsis svp41 mutant. To characterize kiwifruit SVP3 further, ectopic expression in kiwifruit species was performed. Ectopic expression of SVP3 in A. deliciosa did not affect general plant growth or the duration of endodormancy. Ectopic expression of SVP3 in A. eriantha also resulted in plants with normal vegetative growth, bud break, and flowering time. However, significantly prolonged and abnormal flower, fruit, and seed development were observed, arising from SVP3 interactions with kiwifruit floral homeotic MADS-domain proteins. Petal pigmentation was reduced as a result of SVP3-mediated interference with transcription of the kiwifruit flower tissue-specific R2R3 MYB regulator, MYB110a, and the gene encoding the key anthocyanin biosynthetic step, F3GT1. Constitutive expression of SVP3 had a similar impact on reproductive development in transgenic tobacco. The flowering time was not affected in day-neutral and photoperiod-responsive Nicotiana tabacum cultivars, but anthesis and seed germination were significantly delayed. The accumulation of anthocyanin in petals was reduced and the same underlying mechanism of R2R3 MYB NtAN2 transcript reduction was demonstrated.
Resumo:
A new system has been developed to determine enzyme activities of glutathione transferase θ (GSTT1-1) based on radiometric product detection resulting from the enzymic reaction of methyl chloride with 35S-labelled glutathione. In principle, the method is universally applicable for determination of glutathione transferase activities towards a multiplicity of substrates. The method distinguishes between erythrocyte GSTT1-1 activities of human 'non-conjugators', 'low conjugators' and 'high conjugators'. Application to cytosol preparations of livers and kidneys of male and female Fischer 344 and B6C3F1 mice reveals differential GSTT1-1 activities in hepatic and renal tissues. These ought to be considered in species-specific modellings of organ toxicities of chlorinated hydrocarbons.
Resumo:
Premise of the study: Plant invasiveness can be promoted by higher values of adaptive traits (e.g., photosynthetic capacity, biomass accumulation), greater plasticity and coordination of these traits, and by higher and positive relative influence of these functionalities on fitness, such as increasing reproductive output. However, the dataset for this premise rarely include linkages between epidermal-stomatal traits, leaf internal anatomy, and physiological performance. Methods: Three ecological pairs of invasive vs non-invasive (native) woody vine species of South-East Queensland, Australia were investigated for trait differences in leaf morphology and anatomy under varying light intensity. The linkages of these traits with physiological performance (e.g. water use efficiency, photosynthesis, and leaf construction cost) and plant adaptive traits of specific leaf area, biomass, and relative growth rates were also explored. Key results: Mean leaf anatomical trait differed significantly between the two groups, except for stomatal size. Plasticity of traits, and to a very limited extent, their phenotypic integration were higher in the invasive relative to the native species. ANOVA, ordination, and analysis of similarity suggest that for leaf morphology and anatomy, the three functional strategies contribute to the differences between the two groups in the order phenotypic plasticity > trait means > phenotypic integration. Conclusions: The linkages demonstrated in the study between stomatal complex/gross anatomy and physiology are scarce in the ecological literature of plant invasiveness, but the findings suggest that leaf anatomical traits need to be considered routinely as part of weed species assessment and in the worldwide leaf economic spectrum.