653 resultados para ROBOTICS
Resumo:
Robotics in mines, aerospace, underwater, everyday unstructured environments and sensor networks with communicating devices that collect data.
Resumo:
Engaging and motivating students in mathematics lessons can be challenging. The traditional approach of chalk and talk can sometimes be problematic. The new generation of educational robotics has the potential to not only motivate students but also enable teachers to demonstrate concepts in mathematics by connecting concepts with the real world. Robotics hardware and the software are becoming increasing more user-friendly and as a consequence they can be blended in with classroom activities with greater ease. Using robotics in suitably designed activities promotes a constructivist learning environment and enables students to engage in higher order thinking through hands-on problem solving. Teamwork and collaborative learning are also enhanced through the use of this technology. This paper discusses a model for teaching concepts in mathematics in middle year classrooms. It will also highlight some of the benefits and challenges of using robotics in the learning environment.
Resumo:
With the current curriculum focus on correlating classroom problem solving lessons to real-world contexts, are LEGO robotics an effective problem solving tool? This present study was designed to investigate this question and to ascertain what problem solving strategies primary students engaged with when working with LEGO robotics and whether the students were able to effectively relate their problem solving strategies to real-world contexts. The qualitative study involved 23 Grade 6 students participating in robotics activities. The study included data collected from researcher observations of student problem solving discussions, collected software programs, and data from a student completed questionnaire. Results from the study indicated that the robotic activities assisted students to reflect on the problem-solving decisions they made. The study also highlighted that the students were able to relate their problem solving strategies to real-world contexts. The study demonstrated that while LEGO robotics can be considered useful problem solving tools in the classroom, careful teacher scaffolding needs to be implemented in regards to correlating LEGO with authentic problem solving. Further research in regards to how teachers can best embed real-world contexts into effective robotics lessons is recommended.
Resumo:
The practice of robotics and computer vision each involve the application of computational algorithms to data. The research community has developed a very large body of algorithms but for a newcomer to the field this can be quite daunting. For more than 10 years the author has maintained two open-source MATLAB® Toolboxes, one for robotics and one for vision. They provide implementations of many important algorithms and allow users to work with real problems, not just trivial examples. This new book makes the fundamental algorithms of robotics, vision and control accessible to all. It weaves together theory, algorithms and examples in a narrative that covers robotics and computer vision separately and together. Using the latest versions of the Toolboxes the author shows how complex problems can be decomposed and solved using just a few simple lines of code. The topics covered are guided by real problems observed by the author over many years as a practitioner of both robotics and computer vision. It is written in a light but informative style, it is easy to read and absorb, and includes over 1000 MATLAB® and Simulink® examples and figures. The book is a real walk through the fundamentals of mobile robots, navigation, localization, arm-robot kinematics, dynamics and joint level control, then camera models, image processing, feature extraction and multi-view geometry, and finally bringing it all together with an extensive discussion of visual servo systems.
Resumo:
With the current curriculum focus on correlating classroom problem solving lessons to real-world contexts, are LEGO robotics an effective problem solving tool? This present study was designed to investigate this question and to ascertain what problem solving strategies primary students engaged with when working with LEGO robotics and whether the students were able to effectively relate their problem solving strategies to real-world contexts. The qualitative study involved 23 Grade 6 students participating in robotics activities at a Brisbane primary school. The study included data collected from researcher observations of student problem solving discussions, collected software programs, and data from a student completed questionnaire. Results from the study indicated that the robotic activities assisted students to reflect on the problem solving decisions they made. The study also highlighted that the students were able to relate their problem solving strategies to real-world contexts. The study demonstrated that while LEGO robotics can be considered useful problem solving tools in the classroom, careful teacher scaffolding needs to be implemented in regards to correlating LEGO with authentic problem solving. Further research in regards to how teachers can best embed realworld contexts into effective robotics lessons is recommended.
Resumo:
The ninth release of the Toolbox, represents over fifteen years of development and a substantial level of maturity. This version captures a large number of changes and extensions generated over the last two years which support my new book “Robotics, Vision & Control”. The Toolbox has always provided many functions that are useful for the study and simulation of classical arm-type robotics, for example such things as kinematics, dynamics, and trajectory generation. The Toolbox is based on a very general method of representing the kinematics and dynamics of serial-link manipulators. These parameters are encapsulated in MATLAB ® objects - robot objects can be created by the user for any serial-link manipulator and a number of examples are provided for well know robots such as the Puma 560 and the Stanford arm amongst others. The Toolbox also provides functions for manipulating and converting between datatypes such as vectors, homogeneous transformations and unit-quaternions which are necessary to represent 3-dimensional position and orientation. This ninth release of the Toolbox has been significantly extended to support mobile robots. For ground robots the Toolbox includes standard path planning algorithms (bug, distance transform, D*, PRM), kinodynamic planning (RRT), localization (EKF, particle filter), map building (EKF) and simultaneous localization and mapping (EKF), and a Simulink model a of non-holonomic vehicle. The Toolbox also including a detailed Simulink model for a quadcopter flying robot.
Resumo:
This study investigates the value of a robotics-based school engagement experience for preservice teachers enrolled in a fourth year technology education curriculum unit and analyses their perceived abilities and confidence to design and implement engaging technology activities following this experience. Technology is a key learning area in Australian schools but research shows that most teachers find this subject challenging to teach. This could be attributed to teachers’ attitudes and their lack of knowledge, hence investigating preservice teachers’ involvement with technology may provide further insights. In this study, 30 preservice teachers used robotics to implement technology activities with 22 primary school students from a school in a low socio-economic area. Surveys were administered to ascertain the preservice teachers' perceptions of their school engagement experiences. The data gathered from the participants showed that they had gained confidence and knowledge from the experience and felt the engagement activity would assist them to develop and implement technology activities in their future classrooms.
Resumo:
This study investigates the value of a robotics-based school engagement experience for preservice teachers enrolled in a fourth year technology education curriculum unit and analyses their perceived abilities and confidence to design and implement engaging technology activities following this experience. Technology is a key learning area in Australian schools but research shows that most teachers find this subject challenging to teach. This could be attributed to teachers’ attitudes and their lack of knowledge, hence investigating preservice teachers’ involvement with technology may provide further insights. In this study, 30 preservice teachers used robotics to implement technology activities with 22 primary school students from a school in a low socio-economic area. Surveys were administered to ascertain the preservice teachers' perceptions of their school engagement experiences. The data gathered from the participants showed that they had gained confidence and knowledge from the experience and felt the engagement activity would assist them to develop and implement technology activities in their future classrooms.
Resumo:
Recent attention in education within many western contexts has focused on improved outcomes for students, with a particular focus on closing the gap between those who come from disadvantaged backgrounds and the rest of the student population. Much of this attention has supported a set of simplistic solutions to improving scores on high stakes standardized tests. The collateral damage (Nichols & Berliner, 2007) of such responses includes a narrowing of the curriculum, plateaus in gain scores on the tests, and unproductive blame games aimed by the media and politicians at teachers and communities (Nichols & Berliner, 2007; Synder, 2008). Alternative approaches to improving the quality and equity of schooling remain as viable alternatives to these measures. As an example in a recent study of school literacy reform in low SES schools, Luke, Woods and Dooley (2011) argued for the increase of substantive content and intellectual quality of the curriculum as a necessary means to re-engaging middle school students, improving outcomes of schooling and achieving a high quality, high equity system. The MediaClub is an afterschool program for students in years 4 to 7 (9-12 year old) at a primary school in a low SES area of a large Australian city. It is run as part of an Australian Research Council funded research project. The aim of the program has been to provide an opportunity for students to gain expertise in digital technologies and media literacies in an afterschool setting. It was hypothesized that this expertise might then be used to shift the ways of being literate that these students had to call on within classroom teaching and learning events. Each term, there is a different focus on digital media, and information and communication technology (ICT) activities in the MediaClub. The work detailed in this chapter relates to a robotics program presented as one of the modules within this afterschool setting. As part of the program, the participants were challenged to find creative solutions to problems in a constructivist-learning environment.
Resumo:
This article outlines the integration of robotics in two settings in a primary school. This initiative was part of an Australian Research Council project which was undertaken at this school. The article highlights how robotics was integrated in a technology unit in a year four class. It also explains how it was embedded into an after-school program which catered for students from years five to seven. From these experiences further possibilities of engaging with robotics are also discussed.
Resumo:
This discussion has outlined a theoretical and pragmatic framework to demonstrate that future research involving the analysis of human performance in surgical should encourage the use of phenomenology to enhance the knowledge base of this area of study. Merging experiential (first-person) and experimental (third-person) methods may possibly help improve research designs and analyses in the investigation of robotics in surgical performance. By relying solely on third-person techniques, the current methodology and interpretation used to analyze human performance in surgical robotics is limited. Recent advances in cognitive science and psychology have also recognized this limitation and have now begun to shift to neurophenomenology. Finally, discussion on recent robotics research presented here demonstrates the potential phenomenology holds for augmenting the methodological and analysis techniques currently used by researchers of human performance in surgical robotics.
Resumo:
This paper describes an architecture for robotic telepresence and teleoperation based on the well known tools ROS and Skype. We discuss how Skype can be used as a framework for robotic communication and can be integrated into a ROS/Linux framework to allow a remote user to not only interact with people near the robot, but to view maps, sensory data, robot pose and to issue commands to the robot’s navigation stack. This allows the remote user to exploit the robot’s autonomy, providing a much more convenient navigation interface than simple remote joysticking.
Resumo:
In July 2010, China announced the “National Plan for Medium and Long-term Education Reform and Development(2010-2020)” (PRC 2010). The Plan calls for an education system that: • promotes an integrated development which harnesses everyone’s talent; • combines learning and thinking; unifies knowledge and practice; • allows teachers to teach according to individuals’ needs; and • reforms education quality evaluation and personnel evaluation systems focusing on performance including character, knowledge, ability and other factors. This paper discusses the design and implementation of a Professional Learning Program (PLP) undertaken by 432 primary, middle and high school teachers in China. The aim of this initiative was to develop adaptive expertise in using technology that facilitated innovative science and technology teaching and learning as envisaged by the Chinese Ministry of Education’s (2010-2020) education reforms. Key principles derived from literature about professional learning and scaffolding of learning informed the design of the PLP. The analysis of data revealed that the participants had made substantial progress towards the development of adaptive expertise. This was manifested not only by advances in the participants’ repertoires of Subject Matter Knowledge and Pedagogical Content Knowledge but also in changes to their levels of confidence and identities as teachers. It was found that through time the participants had coalesced into a professional learning community that readily engaged in the sharing, peer review, reuse and adaption, and collaborative design of innovative science and technology learning and assessment activities.