21 resultados para RESTRICTED INTRAMOLECULAR ROTATION
Resumo:
Solid medications are often crushed and mixed with food or thickened water to aid drug delivery for those who cannot or prefer not to swallow whole tablets or capsules. Dysphagic patients have the added problem of being unable to safely swallow thin fluids so water thickened with polysaccharides is used to deliver crushed medications and ensure safe swallowing. It is postulated that these polysaccharide systems may restrict drug release by reducing the diffusion of the drug into gastric fluids. METHODS By using a vertical diffusion cell separated with a synthetic membrane, the diffusion of a model drug (atenolol) was studied from a donor system containing the drug dispersed into thickened water with xanthan gum (concentration range from 0.005%-2.2%) into a receptor system containing simulated gastric fluid (SGF) at 37°C. The amount of drug transferred was measured over 8 hours and diffusion coefficients estimated using the Higuchi model approach. RESULTS Atenolol diffusion decreased with increasing xanthan gum concentration up to 1.0%, above which diffusion remained around 300 μ2s-1. The rheological measurements captured the influence of the structure and conformation of the polysaccharide in water on the movement and availability of the drug in SGF. DISCUSSION Dose form administration for dysphagic patients’ needs special attention from general practitioners, pharmacist and patients. Improving drug release of crushed tablets from thickening agents requires a reduction in the diffusion pathway (e.g. by decreasing drop size radius). This approach could make the drug available in SGF in a short time without compromising the mechanical aspects of thickening agents that guarantee safe swallowing.
Resumo:
Magnetic resonance is a well-established tool for structural characterisation of porous media. Features of pore-space morphology can be inferred from NMR diffusion-diffraction plots or the time-dependence of the apparent diffusion coefficient. Diffusion NMR signal attenuation can be computed from the restricted diffusion propagator, which describes the distribution of diffusing particles for a given starting position and diffusion time. We present two techniques for efficient evaluation of restricted diffusion propagators for use in NMR porous-media characterisation. The first is the Lattice Path Count (LPC). Its physical essence is that the restricted diffusion propagator connecting points A and B in time t is proportional to the number of distinct length-t paths from A to B. By using a discrete lattice, the number of such paths can be counted exactly. The second technique is the Markov transition matrix (MTM). The matrix represents the probabilities of jumps between every pair of lattice nodes within a single timestep. The propagator for an arbitrary diffusion time can be calculated as the appropriate matrix power. For periodic geometries, the transition matrix needs to be defined only for a single unit cell. This makes MTM ideally suited for periodic systems. Both LPC and MTM are closely related to existing computational techniques: LPC, to combinatorial techniques; and MTM, to the Fokker-Planck master equation. The relationship between LPC, MTM and other computational techniques is briefly discussed in the paper. Both LPC and MTM perform favourably compared to Monte Carlo sampling, yielding highly accurate and almost noiseless restricted diffusion propagators. Initial tests indicate that their computational performance is comparable to that of finite element methods. Both LPC and MTM can be applied to complicated pore-space geometries with no analytic solution. We discuss the new methods in the context of diffusion propagator calculation in porous materials and model biological tissues.
Resumo:
1. In conservation decision-making, we operate within the confines of limited funding. Furthermore, we often assume particular relationships between management impact and our investment in management. The structure of these relationships, however, is rarely known with certainty - there is model uncertainty. We investigate how these two fundamentally limiting factors in conservation management, money and knowledge, impact optimal decision-making. 2. We use information-gap decision theory to find strategies for maximizing the number of extant subpopulations of a threatened species that are most immune to failure due to model uncertainty. We thus find a robust framework for exploring optimal decision-making. 3. The performance of every strategy decreases as model uncertainty increases. 4. The strategy most robust to model uncertainty depends not only on what performance is perceived to be acceptable but also on available funding and the time horizon over which extinction is considered. 5. Synthesis and applications. We investigate the impact of model uncertainty on robust decision-making in conservation and how this is affected by available conservation funding. We show that subpopulation triage can be a natural consequence of robust decision-making. We highlight the need for managers to consider triage not as merely giving up, but as a tool for ensuring species persistence in light of the urgency of most conservation requirements, uncertainty and the poor state of conservation funding. We illustrate this theory by a specific application to allocation of funding to reduce poaching impact on the Sumatran tiger Panthera tigris sumatrae in Kerinci Seblat National Park. © 2008 The Authors.
Resumo:
The average population age has been increasing for decades. In the U.S., the history of retirement communities in some states is relatively long, reaching back to the 1920s. In Finland, with one of the fastest-growing elderly population and highest total dependency ratios, seniors housing is a relatively new market within the residential housing business. Some studies have reported that only a small percentage of seniors are willing to move into age-restricted communities in Finland. This study analyzes awareness and attitudes of Finnish people toward age-restricted housing for seniors and toward seniors living in these communities. The results show that the majority of Finns were undecided if “senior houses” were the same as assisted living facilities. The respondents associated age-restricted communities with institutional housing for lonely elderly people with illnesses. The results of this study will help investors and developers understand how potential customers see age-restricted housing for seniors. Also, managers of senior houses can use the results for clarifying the idea of senior houses.
Resumo:
Nitrogen fertiliser is a major source of atmospheric N2O and over recent years there is growing evidence for a non-linear, exponential relationship between N fertiliser application rate and N2O emissions. However, there is still high uncertainty around the relationship of N fertiliser rate and N2O emissions for many cropping systems. We conducted year-round measurements of N2O emission and lint yield in four N rate treatments (0, 90, 180 and 270 kg N ha-1) in a cotton-fallow rotation on a black vertosol in Australia. We observed a nonlinear exponential response of N2O emissions to increasing N fertiliser rates with cumulative annual N2O emissions of 0.55 kg N ha-1, 0.67kg N ha-1, 1.07 kg N ha-1 and 1.89 kg N ha-1 for the four respective N fertiliser rates while no N response to yield occurred above 180N. The N fertiliser induced annual N2O EF factors increased from 0.13% to 0.29% and 0.50% for the 90N, 180N and 270N treatments respectively, significantly lower than the IPCC Tier 1 default value (1.0 %). This non-linear response suggests that an exponential N2O emissions model may be more appropriate for use in estimating emission of N2O from soils cultivated to cotton in Australia. It also demonstrates that improved agricultural N management practices can be adopted in cotton to substantially reduce N2O emissions without affecting yield potential.
Resumo:
CD1d-restricted natural killer T (NKT) cells expressing invariant Valpha14Jalpha18 T cell receptor alpha-chains are abundant in murine liver and are implicated in the control of malignancy, infection and autoimmunity. Invariant NKT cells have potent anti-metastatic effects in mice and phase I clinical trials involving their homologues in humans are ongoing. However, invariant NKT cells are less abundant in human liver ( approximately 0.5% of hepatic T cells) than in murine liver (up to 50%) and it is not known if other hepatic T cells are CD1-restricted. We have examined expression of CD1a, CD1b, CD1c and CD1d mRNA and protein in human liver and evaluated the reactivity of mononuclear cells (MNC) from histologically normal and tumour-bearing human liver specimens against these CD1 isoforms. Messenger RNA for all CD1 isotypes was detectable in all liver samples. CD1c and CD1d were expressed at the protein level by hepatic MNC. CD1d, only, was detectable at the cell surface, but CD1c and CD1d were found at an intracellular location in significant numbers of liver MNC. CD1b was not expressed by MNC from healthy livers but was detectable within MNC in all tumour samples tested. Hepatic T cells exhibited reactivity against C1R cells expressing transfected CD1c and CD1d, but neither CD1a nor CD1b. These cells secreted interferon-gamma (IFN-gamma) but not interleukin-4 (IL-4) upon stimulation. In contrast, similar numbers of peripheral T cells released 13- and 16-fold less IFN-gamma in response to CD1c and CD1d, respectively. CD1c and CD1d expression and T cell reactivity were not altered in tumour-bearing liver specimens compared to histologically normal livers. These data suggest that, in addition to invariant CD1d-restricted NKT cells, autoreactive T cells that recognise CD1c and CD1d and release inflammatory cytokines are abundant in human liver.