58 resultados para REFRACTORY EPILEPSY
Resumo:
Lateralization of temporal lobe epilepsy (TLE) is critical for successful outcome of surgery to relieve seizures. TLE affects brain regions beyond the temporal lobes and has been associated with aberrant brain networks, based on evidence from functional magnetic resonance imaging. We present here a machine learning-based method for determining the laterality of TLE, using features extracted from resting-state functional connectivity of the brain. A comprehensive feature space was constructed to include network properties within local brain regions, between brain regions, and across the whole network. Feature selection was performed based on random forest and a support vector machine was employed to train a linear model to predict the laterality of TLE on unseen patients. A leave-one-patient-out cross validation was carried out on 12 patients and a prediction accuracy of 83% was achieved. The importance of selected features was analyzed to demonstrate the contribution of resting-state connectivity attributes at voxel, region, and network levels to TLE lateralization.
Resumo:
PURPOSE The restricted genetic diversity and homogeneous molecular basis of Mendelian disorders in isolated founder populations have rarely been explored in epilepsy research. Our long-term goal is to explore the genetic basis of epilepsies in one such population, the Gypsies. The aim of this report is the clinical and genetic characterization of a Gypsy family with a partial epilepsy syndrome. METHODS Clinical information was collected using semistructured interviews with affected subjects and informants. At least one interictal electroencephalography (EEG) recording was performed for each patient and previous data obtained from records. Neuroimaging included structural magnetic resonance imaging (MRI). Linkage and haplotype analysis was performed using the Illumina IVb Linkage Panel, supplemented with highly informative microsatellites in linked regions and Affymetrix SNP 5.0 array data. RESULTS We observed an early-onset partial epilepsy syndrome with seizure semiology strongly suggestive of temporal lobe epilepsy (TLE), with mild intellectual deficit co-occurring in a large proportion of the patients. Psychiatric morbidity was common in the extended pedigree but did not cosegregate with epilepsy. Linkage analysis definitively excluded previously reported loci, and identified a novel locus on 5q31.3-q32 with an logarithm of the odds (LOD) score of 3 corresponding to the expected maximum in this family. DISCUSSION The syndrome can be classified as familial temporal lobe epilepsy (FTLE) or possibly a new syndrome with mild intellectual deficit. The linked 5q region does not contain any ion channel-encoding genes and is thus likely to contribute new knowledge about epilepsy pathogenesis. Identification of the mutation in this family and in additional patients will define the full phenotypic spectrum.
Resumo:
We have shown that novel synthesis methods combined with careful evaluation of DFT phonon calculations provides new insight into boron compounds including a capacity to predict Tc for AlB2-type superconductors.
Resumo:
Key points • The clinical aims of MR spectroscopy (MRS) in seizure disorders are to help identify, localize and characterize epileptogenic foci. • Lateralizing MRS abnormalities in temporal lobe epilepsy (TLE) may be used clinically in combination with structural and T2 MRI measurements together with other techniques such as EEG, PET and SPECT. • Characteristic metabolite abnormalities are decreased N-acetylaspartate (NAA) with increased choline (Cho) and myoinositol (mI) (short-echo time). • Contralateral metabolite abnormalities are frequently seen in TLE, but are of uncertain significance. • In extra-temporal epilepsy, metabolite abnormalities may be seen where MR imaging (MRI) is normal; but may not be sufficiently localized to be useful clinically. • MRS may help to characterize epileptogenic lesions visible on MRI (aggressive vs. indolent neoplastic, dysplasia). • Spectral editing techniques are required to evaluate specific epilepsy-relevant metabolites (e.g. -aminobutyric acid (GABA)), which may be useful in drug development and evaluation. • MRS with phosphorus (31P) and other nuclei probe metabolism of epilepsy, but are less useful clinically. • There is potential for assessing the of drug mode of action and efficacy through 13C carbon metabolite measurements, while changes in sodium homeostasis resulting from seizure activity may be detected with 23Na MRS.
Resumo:
Background The androgen receptor is a ligand-induced transcriptional factor, which plays an important role in normal development of the prostate as well as in the progression of prostate cancer to a hormone refractory state. We previously reported the identification of a novel AR coactivator protein, L-dopa decarboxylase (DDC), which can act at the cytoplasmic level to enhance AR activity. We have also shown that DDC is a neuroendocrine (NE) marker of prostate cancer and that its expression is increased after hormone-ablation therapy and progression to androgen independence. In the present study, we generated tetracycline-inducible LNCaP-DDC prostate cancer stable cells to identify DDC downstream target genes by oligonucleotide microarray analysis. Results Comparison of induced DDC overexpressing cells versus non-induced control cell lines revealed a number of changes in the expression of androgen-regulated transcripts encoding proteins with a variety of molecular functions, including signal transduction, binding and catalytic activities. There were a total of 35 differentially expressed genes, 25 up-regulated and 10 down-regulated, in the DDC overexpressing cell line. In particular, we found a well-known androgen induced gene, TMEPAI, which wasup-regulated in DDC overexpressing cells, supporting its known co-activation function. In addition, DDC also further augmented the transcriptional repression function of AR for a subset of androgen-repressed genes. Changes in cellular gene transcription detected by microarray analysis were confirmed for selected genes by quantitative real-time RT-PCR. Conclusion Taken together, our results provide evidence for linking DDC action with AR signaling, which may be important for orchestrating molecular changes responsible for prostate cancer progression.
Resumo:
The theory of nonlinear dyamic systems provides some new methods to handle complex systems. Chaos theory offers new concepts, algorithms and methods for processing, enhancing and analyzing the measured signals. In recent years, researchers are applying the concepts from this theory to bio-signal analysis. In this work, the complex dynamics of the bio-signals such as electrocardiogram (ECG) and electroencephalogram (EEG) are analyzed using the tools of nonlinear systems theory. In the modern industrialized countries every year several hundred thousands of people die due to sudden cardiac death. The Electrocardiogram (ECG) is an important biosignal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability analysis is an important tool to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computerbased intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. In this work, we studied the HOS of the HRV signals of normal heartbeat and four classes of arrhythmia. This thesis presents some general characteristics for each of these classes of HRV signals in the bispectrum and bicoherence plots. Several features were extracted from the HOS and subjected an Analysis of Variance (ANOVA) test. The results are very promising for cardiac arrhythmia classification with a number of features yielding a p-value < 0.02 in the ANOVA test. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, seven features were extracted from the heart rate signals using HOS and fed to a support vector machine (SVM) for classification. The performance evaluation protocol in this thesis uses 330 subjects consisting of five different kinds of cardiac disease conditions. The classifier achieved a sensitivity of 90% and a specificity of 89%. This system is ready to run on larger data sets. In EEG analysis, the search for hidden information for identification of seizures has a long history. Epilepsy is a pathological condition characterized by spontaneous and unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. An automatic early detection of the seizure onsets would help the patients and observers to take appropriate precautions. Various methods have been proposed to predict the onset of seizures based on EEG recordings. The use of nonlinear features motivated by the higher order spectra (HOS) has been reported to be a promising approach to differentiate between normal, background (pre-ictal) and epileptic EEG signals. In this work, these features are used to train both a Gaussian mixture model (GMM) classifier and a Support Vector Machine (SVM) classifier. Results show that the classifiers were able to achieve 93.11% and 92.67% classification accuracy, respectively, with selected HOS based features. About 2 hours of EEG recordings from 10 patients were used in this study. This thesis introduces unique bispectrum and bicoherence plots for various cardiac conditions and for normal, background and epileptic EEG signals. These plots reveal distinct patterns. The patterns are useful for visual interpretation by those without a deep understanding of spectral analysis such as medical practitioners. It includes original contributions in extracting features from HRV and EEG signals using HOS and entropy, in analyzing the statistical properties of such features on real data and in automated classification using these features with GMM and SVM classifiers.
Resumo:
For many decades correlation and power spectrum have been primary tools for digital signal processing applications in the biomedical area. The information contained in the power spectrum is essentially that of the autocorrelation sequence; which is sufficient for complete statistical descriptions of Gaussian signals of known means. However, there are practical situations where one needs to look beyond autocorrelation of a signal to extract information regarding deviation from Gaussianity and the presence of phase relations. Higher order spectra, also known as polyspectra, are spectral representations of higher order statistics, i.e. moments and cumulants of third order and beyond. HOS (higher order statistics or higher order spectra) can detect deviations from linearity, stationarity or Gaussianity in the signal. Most of the biomedical signals are non-linear, non-stationary and non-Gaussian in nature and therefore it can be more advantageous to analyze them with HOS compared to the use of second order correlations and power spectra. In this paper we have discussed the application of HOS for different bio-signals. HOS methods of analysis are explained using a typical heart rate variability (HRV) signal and applications to other signals are reviewed.
Resumo:
Endometrial carcinoma is the most common gynecological malignancy in the United States. Although most women present with early disease confined to the uterus, the majority of persistent or recurrent tumors are refractory to current chemotherapies. We have identified a total of 11 different FGFR2 mutations in 3/10 (30%) of endometrial cell lines and 19/187 (10%) of primary uterine tumors. Mutations were seen primarily in tumors of the endometrioid histologic subtype (18/115 cases investigated, 16%). The majority of the somatic mutations identified were identical to germline activating mutations in FGFR2 and FGFR3 that cause Apert Syndrome, Beare-Stevenson Syndrome, hypochondroplasia, achondroplasia and SADDAN syndrome. The two most common somatic mutations identified were S252W (in eight tumors) and N550K (in five samples). Four novel mutations were identified, three of which are also likely to result in receptor gain-of-function. Extensive functional analyses have already been performed on many of these mutations, demonstrating they result in receptor activation through a variety of mechanisms. The discovery of activating FGFR2 mutations in endometrial carcinoma raises the possibility of employing anti-FGFR molecularly targeted therapies in patients with advanced or recurrent endometrial carcinoma.
Resumo:
Epilepsy is characterized by the spontaneous and seemingly unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. An automatic system that detects seizure onsets would allow patients or the people near them to take appropriate precautions, and could provide more insight into this phenomenon. Various methods have been proposed to predict the onset of seizures based on EEG recordings. The use of nonlinear features motivated by the higher order spectra (HOS) has been reported to be a promising approach to differentiate between normal, background (pre-ictal) and epileptic EEG signals. In this work, we made a comparative study of the performance of Gaussian mixture model (GMM) and Support Vector Machine (SVM) classifiers using the features derived from HOS and from the power spectrum. Results show that the selected HOS based features achieve 93.11% classification accuracy compared to 88.78% with features derived from the power spectrum for a GMM classifier. The SVM classifier achieves an improvement from 86.89% with features based on the power spectrum to 92.56% with features based on the bispectrum.
Resumo:
PURPOSE: The purpose of this study is to identify risk factors for developing complications following treatment of refractory glaucoma with transscleral diode laser cyclophotocoagulation (cyclodiode), to improve the safety profile of this treatment modality. METHOD: A retrospective analysis of 72 eyes from 70 patients who were treated with cyclodiode. RESULTS: The mean pre-treatment IOP was 37.0 mmHg (SD 11.0), with a mean post-treatment reduction in intraocular pressure (IOP) of 19.8 mmHg, and a mean IOP at last follow-up of 17.1 mmHg (SD 9.7). Mean total power delivered during treatment was 156.8 Joules (SD 82.7) over a mean of 1.3 treatments (SD 0.6). Sixteen eyes (22.2% of patients) developed complications from the treatment, with the most common being hypotony, occurring in 6 patients, including 4 with neovascular glaucoma. A higher pre-treatment IOP and higher mean total power delivery also were associated with higher complications. CONCLUSIONS: Cyclodiode is an effective treatment option for glaucoma that is refractory to other treatment options. By identifying risk factors for potential complications, cyclodiode can be modified accordingly for each patient to improve safety and efficacy.
Resumo:
A 16 y.o. fully ambulant boy born to consanguineous Indian parents, presented for assessment of a fragility femoral neck fracture sustained against a background of autism and moderately severe intellectual disability. He had a past history of infantile eczema, and epilepsy treated with anticonvulsants from 2 to 10 years of age, with no further seizures following cessation of anticonvulsants. He had a thin body habitus (see Table 1) with long fingers and a high arched palate. He had no speech and negligible social interaction, but physical examination was otherwise unremarkable. Positive investigations revealed an undetectable serum creatinine and a urinary metabolic screen which showed an elevated GUA:Phe of 160 (< 36) and a decreased creatinine of 0.3 mmol/l (1.2–29.5) consistent with the diagnosis of guanidinoacetate methyltransferase(GAMT) deficiency. He was commenced on oral creatine 5 g three times daily. Despite improvement in physical activity, height and bone density, there was no discernable improvement in his intellectual functioning. Proton and phosphorous brain and leg magnetic resonance spectroscopy(MRS) was performed at baseline and showed an increased inorganic phosphorus peak and decreased phosphocreatine synthesis in brain and decreased creatine concentration in muscle. Following creatine treatment total brain creatine(1H-MRS) and phosphocreatine/ATP ratio (31P-MRS) content increased to 30% and 60% of control values, respectively. Brain GUA returned to normal levels.
Resumo:
Metastatic melanoma, a cancer historically refractory to chemotherapeutic strategies, has a poor prognosis and accounts for the majority of skin cancer related mortality. Although the recent approval of two new drugs combating this disease, Ipilimumab and Vemurafenib (PLX4032), has demonstrated for the first time in decades an improvement in overall survival; the clinical efficacy of these drugs has been marred by severe adverse immune reactions and acquired drug resistance in patients, respectively. Thus, understanding the etiology of metastatic melanoma will contribute to the improvement of current therapeutic strategies while leading to the development of novel drug approaches. In order to identify recurrently mutated genes of therapeutic relevance in metastatic melanoma, a panel of stage III local lymph node melanomas were extensively characterised using high-throughput genomic technologies. This led to the identification of mutations in TFG in 5% of melanomas from a candidate gene sequencing approach using SNP array analysis, 24% of melanomas with mutations in MAP3K5 or MAP3K9 though unbiased whole-exome sequencing strategies, and inactivating mutations in NF1 in BRAF/NRAS wild type tumours though pathway analysis. Lastly, this thesis describes the development of a melanoma specific mutation panel that can rapidly identify clinically relevant mutation profiles that could guide effective treatment strategies through a personalised therapeutic approach. These findings are discussed in respect to a number of important issues raised by this study including the current limitation of next-generation sequencing technology, the difficulty in identifying ‘driver’ mutations critical to the development of melanoma due to high carcinogenic exposure by UV radiation, and the ultimate application of mutation screening in a personalised therapeutic setting. In summary, a number novel genes involved in metastatic melanoma have been identified that may have relevance for current therapeutic strategies in treating this disease.