181 resultados para RANK
Resumo:
Rank-based inference is widely used because of its robustness. This article provides optimal rank-based estimating functions in analysis of clustered data with random cluster effects. The extensive simulation studies carried out to evaluate the performance of the proposed method demonstrate that it is robust to outliers and is highly efficient given the existence of strong cluster correlations. The performance of the proposed method is satisfactory even when the correlation structure is misspecified, or when heteroscedasticity in variance is present. Finally, a real dataset is analyzed for illustration.
Resumo:
For clustered survival data, the traditional Gehan-type estimator is asymptotically equivalent to using only the between-cluster ranks, and the within-cluster ranks are ignored. The contribution of this paper is two fold: - (i) incorporating within-cluster ranks in censored data analysis, and; - (ii) applying the induced smoothing of Brown and Wang (2005, Biometrika) for computational convenience. Asymptotic properties of the resulting estimating functions are given. We also carry out numerical studies to assess the performance of the proposed approach and conclude that the proposed approach can lead to much improved estimators when strong clustering effects exist. A dataset from a litter-matched tumorigenesis experiment is used for illustration.
Resumo:
With growing population and fast urbanization in Australia, it is a challenging task to maintain our water quality. It is essential to develop an appropriate statistical methodology in analyzing water quality data in order to draw valid conclusions and hence provide useful advices in water management. This paper is to develop robust rank-based procedures for analyzing nonnormally distributed data collected over time at different sites. To take account of temporal correlations of the observations within sites, we consider the optimally combined estimating functions proposed by Wang and Zhu (Biometrika, 93:459-464, 2006) which leads to more efficient parameter estimation. Furthermore, we apply the induced smoothing method to reduce the computational burden. Smoothing leads to easy calculation of the parameter estimates and their variance-covariance matrix. Analysis of water quality data from Total Iron and Total Cyanophytes shows the differences between the traditional generalized linear mixed models and rank regression models. Our analysis also demonstrates the advantages of the rank regression models for analyzing nonnormal data.
Resumo:
Environmental data usually include measurements, such as water quality data, which fall below detection limits, because of limitations of the instruments or of certain analytical methods used. The fact that some responses are not detected needs to be properly taken into account in statistical analysis of such data. However, it is well-known that it is challenging to analyze a data set with detection limits, and we often have to rely on the traditional parametric methods or simple imputation methods. Distributional assumptions can lead to biased inference and justification of distributions is often not possible when the data are correlated and there is a large proportion of data below detection limits. The extent of bias is usually unknown. To draw valid conclusions and hence provide useful advice for environmental management authorities, it is essential to develop and apply an appropriate statistical methodology. This paper proposes rank-based procedures for analyzing non-normally distributed data collected at different sites over a period of time in the presence of multiple detection limits. To take account of temporal correlations within each site, we propose an optimal linear combination of estimating functions and apply the induced smoothing method to reduce the computational burden. Finally, we apply the proposed method to the water quality data collected at Susquehanna River Basin in United States of America, which dearly demonstrates the advantages of the rank regression models.
Resumo:
We consider rank regression for clustered data analysis and investigate the induced smoothing method for obtaining the asymptotic covariance matrices of the parameter estimators. We prove that the induced estimating functions are asymptotically unbiased and the resulting estimators are strongly consistent and asymptotically normal. The induced smoothing approach provides an effective way for obtaining asymptotic covariance matrices for between- and within-cluster estimators and for a combined estimator to take account of within-cluster correlations. We also carry out extensive simulation studies to assess the performance of different estimators. The proposed methodology is substantially Much faster in computation and more stable in numerical results than the existing methods. We apply the proposed methodology to a dataset from a randomized clinical trial.
Resumo:
We consider ranked-based regression models for clustered data analysis. A weighted Wilcoxon rank method is proposed to take account of within-cluster correlations and varying cluster sizes. The asymptotic normality of the resulting estimators is established. A method to estimate covariance of the estimators is also given, which can bypass estimation of the density function. Simulation studies are carried out to compare different estimators for a number of scenarios on the correlation structure, presence/absence of outliers and different correlation values. The proposed methods appear to perform well, in particular, the one incorporating the correlation in the weighting achieves the highest efficiency and robustness against misspecification of correlation structure and outliers. A real example is provided for illustration.
Resumo:
We consider rank-based regression models for repeated measures. To account for possible withinsubject correlations, we decompose the total ranks into between- and within-subject ranks and obtain two different estimators based on between- and within-subject ranks. A simple perturbation method is then introduced to generate bootstrap replicates of the estimating functions and the parameter estimates. This provides a convenient way for combining the corresponding two types of estimating function for more efficient estimation.
Resumo:
Adaptions of weighted rank regression to the accelerated failure time model for censored survival data have been successful in yielding asymptotically normal estimates and flexible weighting schemes to increase statistical efficiencies. However, for only one simple weighting scheme, Gehan or Wilcoxon weights, are estimating equations guaranteed to be monotone in parameter components, and even in this case are step functions, requiring the equivalent of linear programming for computation. The lack of smoothness makes standard error or covariance matrix estimation even more difficult. An induced smoothing technique overcame these difficulties in various problems involving monotone but pure jump estimating equations, including conventional rank regression. The present paper applies induced smoothing to the Gehan-Wilcoxon weighted rank regression for the accelerated failure time model, for the more difficult case of survival time data subject to censoring, where the inapplicability of permutation arguments necessitates a new method of estimating null variance of estimating functions. Smooth monotone parameter estimation and rapid, reliable standard error or covariance matrix estimation is obtained.
Resumo:
A 'pseudo-Bayesian' interpretation of standard errors yields a natural induced smoothing of statistical estimating functions. When applied to rank estimation, the lack of smoothness which prevents standard error estimation is remedied. Efficiency and robustness are preserved, while the smoothed estimation has excellent computational properties. In particular, convergence of the iterative equation for standard error is fast, and standard error calculation becomes asymptotically a one-step procedure. This property also extends to covariance matrix calculation for rank estimates in multi-parameter problems. Examples, and some simple explanations, are given.
Resumo:
Recovering the motion of a non-rigid body from a set of monocular images permits the analysis of dynamic scenes in uncontrolled environments. However, the extension of factorisation algorithms for rigid structure from motion to the low-rank non-rigid case has proved challenging. This stems from the comparatively hard problem of finding a linear “corrective transform” which recovers the projection and structure matrices from an ambiguous factorisation. We elucidate that this greater difficulty is due to the need to find multiple solutions to a non-trivial problem, casting a number of previous approaches as alleviating this issue by either a) introducing constraints on the basis, making the problems nonidentical, or b) incorporating heuristics to encourage a diverse set of solutions, making the problems inter-dependent. While it has previously been recognised that finding a single solution to this problem is sufficient to estimate cameras, we show that it is possible to bootstrap this partial solution to find the complete transform in closed-form. However, we acknowledge that our method minimises an algebraic error and is thus inherently sensitive to deviation from the low-rank model. We compare our closed-form solution for non-rigid structure with known cameras to the closed-form solution of Dai et al. [1], which we find to produce only coplanar reconstructions. We therefore make the recommendation that 3D reconstruction error always be measured relative to a trivial reconstruction such as a planar one.
Resumo:
Objective: This paper explores the effects of perceived stage of cancer (PSOC) on carers' anxiety and depression during the patients' final year. Methods: A consecutive sample of patients and carers (N=98) were surveyed at regular intervals regarding PSOC, and anxiety and depression using the Hospital Anxiety and Depression Scale. Means were compared by gender using the Mann-Whitney U-test. The chi-square was used to analyse categorical data. Agreement between carers' and patients' PSOC was estimated using kappa statistics. Correlations between carers' PSOC and their anxiety and depression were calculated using the Spearman's rank correlation. Results: Over time, an increasing proportion of carers reported that the cancer was advanced, culminating at 43% near death. Agreement regarding PSOC was fair (kappa=0.29-0.34) until near death (kappa=0.21). Carers' anxiety increased over the year; depression increased in the final 6 months. Females were more anxious (p=0.049, 6 months; p=0.009, 3 months) than males, and more depressed until 1 month to death. The proportion of carers reporting moderate-severe anxiety almost doubled over the year to 27%, with more females in this category at 6 months (p=0.05). Carers with moderate-severe depression increased from 6 to 15% over the year. Increased PSOC was weakly correlated with increased anxiety and depression. Conclusions: Carers' anxiety exceeded depression in severity during advanced cancer. Females generally experienced greater anxiety and depression. Carers were more realistic than patients regarding the ultimate outcome, which was reflected in their declining mental health, particularly near the end.
Resumo:
Sexually transmitted chlamydial infection initially establishes in the endocervix in females, but if the infection ascends the genital tract, significant disease, including infertility, can result. Many of the mechanisms associated with chlamydial infection kinetics and disease ascension are unknown. We attempt to elucidate some of these processes by developing a novel mathematical model, using a cellular automata–partial differential equation model. We matched our model outputs to experimental data of chlamydial infection of the guinea-pig cervix and carried out sensitivity analyses to determine the relative influence of model parameters. We found that the rate of recruitment and action of innate immune cells to clear extracellular chlamydial particles and the rate of passive movement of chlamydial particles are the dominant factors in determining the early course of infection, magnitude of the peak chlamydial time course and the time of the peak. The rate of passive movement was found to be the most important factor in determining whether infection would ascend to the upper genital tract. This study highlights the importance of early innate immunity in the control of chlamydial infection and the significance of motility-diffusive properties and the adaptive immune response in the magnitude of infection and in its ascension.
Resumo:
This paper presents the author characteristics of papers published in The Australian Sociological Association (TASA) journal, the Journal of Sociology (formerly the Australian and New Zealand Journal of Sociology) between 1965 and 2008. The aim of the paper is empirically to identify trends in authorship. The review examines all articles published in the period (excluding book reviews). The rationale of the study is to reveal trends in who publishes in the journal in terms of authors’ academic rank, gender, institution, and country. A table of those who have published the greatest number of papers is also presented. Findings show that over time the gap between the proportion of males and females publishing has closed; more PhD students and research fellows are publishing in the journal in recent decades; the highest proportion of authors consistently come from the Australian National University and The University of Queensland; and most authors are located in Australia. Information such as this can inform editorial practices and serve to inform the membership and readership on the nature of the journal.
Resumo:
The World Wide Web has become a medium for people to share information. People use Web-based collaborative tools such as question answering (QA) portals, blogs/forums, email and instant messaging to acquire information and to form online-based communities. In an online QA portal, a user asks a question and other users can provide answers based on their knowledge, with the question usually being answered by many users. It can become overwhelming and/or time/resource consuming for a user to read all of the answers provided for a given question. Thus, there exists a need for a mechanism to rank the provided answers so users can focus on only reading good quality answers. The majority of online QA systems use user feedback to rank users’ answers and the user who asked the question can decide on the best answer. Other users who didn’t participate in answering the question can also vote to determine the best answer. However, ranking the best answer via this collaborative method is time consuming and requires an ongoing continuous involvement of users to provide the needed feedback. The objective of this research is to discover a way to recommend the best answer as part of a ranked list of answers for a posted question automatically, without the need for user feedback. The proposed approach combines both a non-content-based reputation method and a content-based method to solve the problem of recommending the best answer to the user who posted the question. The non-content method assigns a score to each user which reflects the users’ reputation level in using the QA portal system. Each user is assigned two types of non-content-based reputations cores: a local reputation score and a global reputation score. The local reputation score plays an important role in deciding the reputation level of a user for the category in which the question is asked. The global reputation score indicates the prestige of a user across all of the categories in the QA system. Due to the possibility of user cheating, such as awarding the best answer to a friend regardless of the answer quality, a content-based method for determining the quality of a given answer is proposed, alongside the non-content-based reputation method. Answers for a question from different users are compared with an ideal (or expert) answer using traditional Information Retrieval and Natural Language Processing techniques. Each answer provided for a question is assigned a content score according to how well it matched the ideal answer. To evaluate the performance of the proposed methods, each recommended best answer is compared with the best answer determined by one of the most popular link analysis methods, Hyperlink-Induced Topic Search (HITS). The proposed methods are able to yield high accuracy, as shown by correlation scores: Kendall correlation and Spearman correlation. The reputation method outperforms the HITS method in terms of recommending the best answer. The inclusion of the reputation score with the content score improves the overall performance, which is measured through the use of Top-n match scores.
Resumo:
The increasing diversity of the Internet has created a vast number of multilingual resources on the Web. A huge number of these documents are written in various languages other than English. Consequently, the demand for searching in non-English languages is growing exponentially. It is desirable that a search engine can search for information over collections of documents in other languages. This research investigates the techniques for developing high-quality Chinese information retrieval systems. A distinctive feature of Chinese text is that a Chinese document is a sequence of Chinese characters with no space or boundary between Chinese words. This feature makes Chinese information retrieval more difficult since a retrieved document which contains the query term as a sequence of Chinese characters may not be really relevant to the query since the query term (as a sequence Chinese characters) may not be a valid Chinese word in that documents. On the other hand, a document that is actually relevant may not be retrieved because it does not contain the query sequence but contains other relevant words. In this research, we propose two approaches to deal with the problems. In the first approach, we propose a hybrid Chinese information retrieval model by incorporating word-based techniques with the traditional character-based techniques. The aim of this approach is to investigate the influence of Chinese segmentation on the performance of Chinese information retrieval. Two ranking methods are proposed to rank retrieved documents based on the relevancy to the query calculated by combining character-based ranking and word-based ranking. Our experimental results show that Chinese segmentation can improve the performance of Chinese information retrieval, but the improvement is not significant if it incorporates only Chinese segmentation with the traditional character-based approach. In the second approach, we propose a novel query expansion method which applies text mining techniques in order to find the most relevant words to extend the query. Unlike most existing query expansion methods, which generally select the highly frequent indexing terms from the retrieved documents to expand the query. In our approach, we utilize text mining techniques to find patterns from the retrieved documents that highly correlate with the query term and then use the relevant words in the patterns to expand the original query. This research project develops and implements a Chinese information retrieval system for evaluating the proposed approaches. There are two stages in the experiments. The first stage is to investigate if high accuracy segmentation can make an improvement to Chinese information retrieval. In the second stage, a text mining based query expansion approach is implemented and a further experiment has been done to compare its performance with the standard Rocchio approach with the proposed text mining based query expansion method. The NTCIR5 Chinese collections are used in the experiments. The experiment results show that by incorporating the text mining based query expansion with the hybrid model, significant improvement has been achieved in both precision and recall assessments.