30 resultados para Pyrrole


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we have synthesized two novel diketopyrrolopyrrole (DPP) based donor-acceptor (D-A) copolymers poly{3,6-dithiophene-2-yl-2,5-di(2-octyl)- pyrrolo[3,4-c]pyrrole-1,4-dione-alt-1,5-bis(dodecyloxy)naphthalene} (PDPPT-NAP) and poly{3,6-dithiophene-2-yl-2,5-di(2-butyldecyl)-pyrrolo[3,4-c]pyrrole-1,4- dione-alt-2-dodecyl-2H-benzo[d][1,2,3]triazole} (PDPPT-BTRZ) via direct arylation organometallic coupling. Both copolymers contain a common electron withdrawing DPP building block which is combined with electron donating alkoxy naphthalene and electron withdrawing alkyl-triazole comonomers. The number average molecular weight (Mn) determined by gel permeation chromatography (GPC) for polymer PDPPT-NAP is around 23 400 g mol-1 whereas for polymer PDPPT-BTRZ it is 18 600 g mol-1. The solid state absorption spectra of these copolymers show a wide range of absorption from 400 nm to 1000 nm with optical band gaps calculated from absorption cut off values in the range of 1.45-1.30 eV. The HOMO values determined for PDPPT-NAP and PDPPT-BTRZ copolymers from photoelectron spectroscopy in air (PESA) data are 5.15 eV and 5.25 eV respectively. These polymers exhibit promising p-channel and ambipolar behaviour when used as an active layer in organic thin-film transistor (OTFT) devices. The highest hole mobility measured for polymer PDPPT-NAP is around 0.0046 cm2 V-1 s-1 whereas the best ambipolar performance was calculated for PDPPT-BTRZ with a hole and electron mobility of 0.01 cm2 V-1 s-1 and 0.006 cm2 V-1 s-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Furan substituted diketopyrrolopyrrole (DBF) combined with benzothiadiazole based polymer semiconductor PDPP-FBF has been synthesized and evaluated as an ambipolar semiconductor in organic thin-film transistors. Hole and electron mobilities as high as 0.20 cm 2 V -1 s -1 and 0.56 cm 2 V -1 s -1, respectively, are achieved for PDPP-FBF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A diketopyrrolopyrrole (DPP) with fluorenone (FN) based low band gap alternating copolymer (PDPPT-alt-FN) has been synthesized via Suzuki coupling. PDPPT-alt-FN exhibits a deep HOMO level with a lower band gap. Fabricated organic thin film transistors using PDPPT-alt-FN as a channel semiconductor show p-channel behaviour with the highest hole mobility of 0.083 cm2 V-1 s-1 measured in air.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fluorenone based alternating copolymer (PFN-DPPF) with a furan based fused aromatic moiety has been designed and synthesized. PFN-DPPF exhibits a small band gap with a lower HOMO value. Testing this polymer semiconductor as the active layer in organic thin-film transistors results in hole mobilities as high as 0.15 cm2 V-1 s-1 in air.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fused aromatic furan-substituted diketopyrrolopyrrole and novel diphenylfumaronitrile conjugated building blocks are used for the synthesis of an alternating copolymer (DPFN-DPPF) via Suzuki polycondensation. In this paper, the first attempt to use the diphenylfumaronitrile building block for the synthesis of conjugated polymer is described. The number-average and weight-average molecular weights calculated for DPFN-DPPF are 20?661 and 66?346 g mol-1, respectively. The optical bandgap calculated for DPFN-DPPF is 1.53 eV whereas the highest occupied molecular orbital (HOMO) value calculated by photoelectron spectroscopy in air (PESA) is 5.50 eV. The calculated HOMO value is lower, which is suitable for stable organic electronic devices. DPFN-DPPF polymer is used as an active layer in bottom-contact bottom-gate organic thin-film transistor devices and the thin film exhibits a hole mobility of 0.20 cm2 V-1 s-1 in air.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new, solution-processable, low-bandgap, diketopyrrolopyrrole- benzothiadiazole-based, donor-acceptor polymer semiconductor (PDPP-TBT) is reported. This polymer exhibits ambipolar charge transport when used as a single component active semiconductor in OTFTs with balanced hole and electron mobilities of 0.35 cm2 V-1s-1 and 0.40 cm 2 V-1s-1, respectively. This polymer has the potential for ambipolar transistor-based complementary circuits in printed electronics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we report design, synthesis and characterization of solution processable low band gap polymer semiconductors, poly{3,6-difuran-2-yl-2,5-di(2- octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione-alt-phenylene} (PDPP-FPF), poly{3,6-difuran-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1, 4-dione-alt-naphthalene} (PDPP-FNF) and poly{3,6-difuran-2-yl-2,5-di(2- octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione-alt-anthracene} (PDPP-FAF) using the furan-containing 3,6-di(furan-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (DBF) building block. As DBF acts as an acceptor moiety, a series of donor-acceptor (D-A) copolymers can be generated when it is attached alternatively with phenylene, naphthalene or anthracene donor comonomer blocks. Optical and electrochemical characterization of thin films of these polymers reveals band gaps in the range of 1.55-1.64 eV. These polymers exhibit excellent hole mobility when used as the active layer in organic thin-film transistor (OTFT) devices. Among the series, the highest hole mobility of 0.11 cm 2 V -1 s -1 is achieved in bottom gate and top-contact OTFT devices using PDPP-FNF. When these polymers are used as a donor and [70]PCBM as the acceptor in organic photovoltaic (OPV) devices, power conversion efficiencies (PCE) of 2.5 and 2.6% are obtained for PDPP-FAF and PDPP-FNF polymers, respectively. Such mobility values in OTFTs and performance in OPV make furan-containing DBF a very promising block for designing new polymer semiconductors for a wide range of organic electronic applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A benzothiadiazole end-capped small molecule 3,6-bis(5-(benzo[c][1,2,5] thiadiazol-4-yl)thiophen-2-yl)-2,5-bis(2-butyloctyl)pyrrolo[3,4-c]pyrrole-1, 4(2H,5H)-dione (BO-DPP-BTZ) using a fused aromatic moiety DPP (at the centre) is designed and synthesized. BO-DPP-BTZ is a donor-acceptor-donor (D-A-D) structure which possesses a band gap of 1.6 eV and exhibits a strong solid state ordering inferred from ∼120 nm red shift of the absorption maxima from solution to thin film. Field-effect transistors utilizing a spin coated thin film of BO-DPP-BTZ as an active layer exhibited a hole mobility of 0.06 cm 2 V-1 s-1. Solution-processed bulk heterojunction organic photovoltaics employing a blend of BO-DPP-BTZ and [70]PCBM demonstrated a power conversion efficiency of 0.9%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel solution processable donor-acceptor (D-A) based low band gap polymer semiconductor poly{3,6-difuran-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4- c]pyrrole-1,4-dione-alt-thienylenevinylene} (PDPPF-TVT), was designed and synthesized by a Pd-catalyzed Stille coupling route. An electron deficient furan based diketopyrrolopyrrole (DPP) block and electron rich thienylenevinylene (TVT) donor moiety were attached alternately in the polymer backbone. The polymer exhibited good solubility, film forming ability and thermal stability. The polymer exhibits wide absorption bands from 400 nm to 950 nm (UV-vis-NIR region) with absorption maximum centered at 782 nm in thin film. The optical band gap (Eoptg) calculated from the polymer film absorption onset is around 1.37 eV. The π-energy band level (ionization potential) calculated by photoelectron spectroscopy in air (PESA) for PDPPF-TVT is around 5.22 eV. AFM and TEM analyses of the polymer reveal nodular terrace morphology with optimized crystallinity after 200 °C thermal annealing. This polymer exhibits p-channel charge transport characteristics when used as the active semiconductor in organic thin-film transistor (OTFT) devices. The highest hole mobility of 0.13 cm 2 V -1 s -1 is achieved in bottom gate and top-contact OTFT devices with on/off ratios in the range of 10 6-10 7. This work reveals that the replacement of thiophene by furan in DPP copolymers exhibits such a high mobility, which makes DPP furan a promising block for making a wide range of promising polymer semiconductors for broad applications in organic electronics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organic photovoltaic devices with either bulk heterojunction (BHJ) or nanoparticulate (NP) active layers have been prepared from a 1:2 blend of (poly{3,6-dithiophene-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1, 4-dione-alt-naphthalene}) (PDPP-TNT) and the fullerene acceptor, ([6,6]-phenyl C71-butyric acid methyl ester) (PC70BM). Atomic force microscopy (AFM) and scanning electron microscopy (SEM) have been used to investigate the morphology of the active layers of the two approaches. Mild thermal treatment of the NP film is required to promote initial joining of the NPs in order for the devices to function, however the NP structure is retained. Consequently, whereas gross phase segregation of the active layer occurs in the BHJ device spin cast from chloroform, the nanoparticulate approach retains control of the material domain sizes on the length scale of exciton diffusion in the materials. As a result, NP devices are found to generate more than twice the current density of BHJ devices and have a substantially greater overall efficiency. The use of aqueous nanoparticulate dispersions offers a promising approach to control the donor acceptor morphology on the nanoscale with the benefit of environmentally- friendly, solution-based fabrication. © 2014 the Owner Societies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the blend morphology and performance of bulk heterojunction organic photovoltaic devices comprising the donor polymer, pDPP-TNT (poly{3,6-dithiophene-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1, 4-dione-alt-naphthalene}) and the fullerene acceptor, [70]PCBM ([6,6]-phenyl C71-butyric acid methyl ester). The blend morphology is heavily dependent upon the solvent system used in the fabrication of thin films. Thin films spin-coated from chloroform possess a cobblestone-like morphology, consisting of thick, round-shaped [70]PCBM-rich mounds separated by thin polymer-rich valleys. The size of the [70]PCBM domains is found to depend on the overall film thickness. Thin films spin-coated from a chloroform:dichlorobenzene mixed solvent system are smooth and consist of a network of pDPP-TNT nanofibers embedded in a [70]PCBM-rich matrix. Rinsing the films in hexane selectively removes [70]PCBM and allows for analysis of domain size and purity. It also provides a means for investigating exciton dissociation efficiency through relative photoluminescence yield measurements. Devices fabricated from chloroform solutions show much poorer performance than the devices fabricated from the mixed solvent system; this disparity in performance is seen to be more pronounced with increasing film thickness. The primary cause for the improved performance of devices fabricated from mixed solvents is attributed to the greater donor-acceptor interfacial area and resulting greater capacity for charge carrier generation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spontaneous adsorption of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) on glassy carbon (GC) electrode leads to the formation of a stable self-assembled monolayer (SAM). Since the SAM of 4α-CoIITAPc is redox active, its adsorption on GC electrode was followed by cyclic voltammetry. SAM of 4α-CoIITAPc on GC electrode shows two pairs of well-defined redox peaks corresponding to CoIII/CoII and CoIIIPc−1/CoIIIPc−2. The surface coverage (Γ) value, calculated by integrating the charge under CoII oxidation, was used to study the adsorption thermodynamics and kinetics of 4α-CoIITAPc on GC surface. Cyclic voltammetric studies show that the adsorption of 4α-CoIITAPc on GC electrode has reached the saturation coverage (Γs) within 3 h. The Γs value for the SAM of 4α-CoIITAPc on GC electrode was found to be 2.37 × 10−10 mol cm−2. Gibbs free energy (ΔGads) and adsorption rate constant (kad) for the adsorption of 4α-CoIITAPc on GC surface were found to be −16.76 kJ mol−1 and 7.1 M−1 s−1, respectively. The possible mechanism for the self-assembly of 4α-CoIITAPc on GC surface is through the addition of nucleophilic amines to the olefinic bond on the GC surface in addition to a meager contribution from π stacking. The contribution of π stacking was confirmed from the adsorption of unsubstituted phthalocyanatocobalt(II) (CoPc) on GC electrode. Raman spectra for the SAM of 4α-CoIITAPc on carbon surface shows strong stretching and breathing bands of Pc macrocycle, pyrrole ring and isoindole ring. Raman and CV studies suggest that 4α-CoIITAPc is adopting nearly a flat orientation or little bit tilted orientation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-assembled monolayer (SAM) of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) was prepared on indium tin oxide (ITO) electrode by spontaneous adsorption from dimethylformamide (DMF) solution containing 4α-CoIITAPc. The SAM of 4α-CoIITAPc formed on ITO electrode was characterized by cyclic voltammetry, Raman and UV–visible spectroscopic techniques. The cyclic voltammogram (CV) of 4α-CoIITAPc SAM shows two pairs of well-defined redox peaks corresponding to CoIII/CoII and CoIIIPc−1/CoIIIPc−2. The surface coverage (Γ) was calculated by integrating the charge under the anodic wave corresponding to CoII oxidation and it was found to be 2.25 × 10−10 mol cm−2. Raman spectrum obtained for the SAM of 4α-CoIITAPc on ITO surface shows strong stretching and breathing bands of Pc macrocycle, pyrrole ring and isoindole ring. Further, the –NH2 bending mode of vibration was absent for the SAM of 4α-CoIITAPc on ITO surface which indirectly confirmed that all the amino groups of 4α-CoIITAPc are involved in bonding with ITO surface. UV–visible spectrum for the SAM of 4α-CoIITAPc on ITO surface shows an intense B-band, Q-band and n–π∗ transition with slight broadening when compared to that of 4α-CoIITAPc in DMF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel solution-processable non-fullerene electron acceptor 6,6′-(5,5′-(9,9-dioctyl-9H-fluorene-2,7-diyl)bis(thiophene-5,2-diyl))bis(2,5-bis(2-ethylhexyl)-3-(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione) (DPP1) based on fluorene and diketopyrrolopyrrole conjugated moieties was designed, synthesized and fully characterized. DPP1 exhibited excellent solubility and high thermal stability which are essential for easy processing. Upon using DPP1 as an acceptor with the classical electron donor poly(3-hexylthiophene), solution processable bulk-heterojunction solar cells afforded a power conversion efficiency of 1.2% with a high open-circuit voltage (1.1 V). As per our knowledge, this value of open circuit voltage is one of the highest values reported so far for a bulk-heterojunction device using DPP1 as a non-fullerene acceptor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The technique of photo-CELIV (charge extraction by linearly increasing voltage) is one of the more straightforward and popular approaches to measure the faster carrier mobility in measurement geometries that are relevant for operational solar cells and other optoelectronic devices. It has been used to demonstrate a time-dependent photocarrier mobility in pristine polymers, attributed to energetic relaxation within the density of states. Conversely, in solar cell blends, the presence or absence of such energetic relaxation on transport timescales remains under debate. We developed a complete numerical model and performed photo-CELIV experiments on the model high efficiency organic solar cell blend poly[3,6-dithiophene-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione-alt-naphthalene] (PDPP-TNT):[6,6]-phenyl-C71-butyric-acid-methyl-ester (PC70BM). In the studied solar cells a constant, time-independent mobility on the scale relevant to charge extraction was observed, where thermalisation of photocarriers occurs on time scales much shorter than the transit time. Therefore, photocarrier relaxation effects are insignificant for charge transport in these efficient photovoltaic devices.