364 resultados para Primary seed dispersal
Resumo:
A mathematical model for the galvanostatic discharge and recovery of porous, electrolytic manganese dioxide cathodes, similar to those found within primary alkaline batteries is presented. The phenomena associated with discharge are modeled over three distinct size scales, a cathodic (or macroscopic) scale, a porous manganese oxide particle (or microscopic) scale, and a manganese oxide crystal (or submicroscopic) scale. The physical and chemical coupling between these size scales is included in the model. In addition, the model explicitly accounts for the graphite phase within the cathode. The effects that manganese oxide particle size and proton diffusion have on cathodic discharge and the effects of intraparticle voids and microporous electrode structure are predicted using the model.
Error, Bias, and Long-Branch Attraction in Data for Two Chloroplast Photosystem Genes in Seed Plants
Resumo:
Sequences of two chloroplast photosystem genes, psaA and psbB, together comprising about 3,500 bp, were obtained for all five major groups of extant seed plants and several outgroups among other vascular plants. Strongly supported, but significantly conflicting, phylogenetic signals were obtained in parsimony analyses from partitions of the data into first and second codon positions versus third positions. In the former, both genes agreed on a monophyletic gymnosperms, with Gnetales closely related to certain conifers. In the latter, Gnetales are inferred to be the sister group of all other seed plants, with gymnosperms paraphyletic. None of the data supported the modern ‘‘anthophyte hypothesis,’’ which places Gnetales as the sister group of flowering plants. A series of simulation studies were undertaken to examine the error rate for parsimony inference. Three kinds of errors were examined: random error, systematic bias (both properties of finite data sets), and statistical inconsistency owing to long-branch attraction (an asymptotic property). Parsimony reconstructions were extremely biased for third-position data for psbB. Regardless of the true underlying tree, a tree in which Gnetales are sister to all other seed plants was likely to be reconstructed for these data. None of the combinations of genes or partitions permits the anthophyte tree to be reconstructed with high probability. Simulations of progressively larger data sets indicate the existence of long-branch attraction (statistical inconsistency) for third-position psbB data if either the anthophyte tree or the gymnosperm tree is correct. This is also true for the anthophyte tree using either psaA third positions or psbB first and second positions. A factor contributing to bias and inconsistency is extremely short branches at the base of the seed plant radiation, coupled with extremely high rates in Gnetales and nonseed plant outgroups. M. J. Sanderson,* M. F. Wojciechowski,*† J.-M. Hu,* T. Sher Khan,* and S. G. Brady
Resumo:
There exists a general consensus in the science education literature around the goal of enhancing students. and teachers. views of nature of science (NOS). An emerging area of research in science education explores NOS and argumentation, and the aim of this study was to explore the effectiveness of a science content course incorporating explicit NOS and argumentation instruction on preservice primary teachers. views of NOS. A constructivist perspective guided the study, and the research strategy employed was case study research. Five preservice primary teachers were selected for intensive investigation in the study, which incorporated explicit NOS and argumentation instruction, and utilised scientific and socioscientific contexts for argumentation to provide opportunities for participants to apply their NOS understandings to their arguments. Four primary sources of data were used to provide evidence for the interpretations, recommendations, and implications that emerged from the study. These data sources included questionnaires and surveys, interviews, audio- and video-taped class sessions, and written artefacts. Data analysis involved the formation of various assertions that informed the major findings of the study, and a variety of validity and ethical protocols were considered during the analysis to ensure the findings and interpretations emerging from the data were valid. Results indicated that the science content course was effective in enabling four of the five participants. views of NOS to be changed. All of the participants expressed predominantly limited views of the majority of the examined NOS aspects at the commencement of the study. Many positive changes were evident at the end of the study with four of the five participants expressing partially informed and/or informed views of the majority of the examined NOS aspects. A critical analysis of the effectiveness of the various course components designed to facilitate the development of participants‟ views of NOS in the study, led to the identification of three factors that mediated the development of participants‟ NOS views: (a) contextual factors (including context of argumentation, and mode of argumentation), (b) task-specific factors (including argumentation scaffolds, epistemological probes, and consideration of alternative data and explanations), and (c) personal factors (including perceived previous knowledge about NOS, appreciation of the importance and utility value of NOS, and durability and persistence of pre-existing beliefs). A consideration of the above factors informs recommendations for future studies that seek to incorporate explicit NOS and argumentation instruction as a context for learning about NOS.
Resumo:
This thesis focuses on the volatile and hygroscopic properties of mixed aerosol species. In particular, the influence organic species of varying solubility have upon seed aerosols. Aerosol studies were conducted at the Paul Scherrer Institut Laboratory for Atmospheric Chemistry (PSI-LAC, Villigen, Switzerland) and at the Queensland University of Technology International Laboratory for Air Quality and Health (QUT-ILAQH, Brisbane, Australia). The primary measurement tool employed in this program was the Volatilisation and Hygroscopicity Tandem Differential Mobility Analyser (VHTDMA - Johnson et al. 2004). This system was initially developed at QUT within the ILAQH and was completely re-developed as part of this project (see Section 1.4 for a description of this process). The new VHTDMA was deployed to the PSI-LAC where an analysis of the volatile and hygroscopic properties of ammonium sulphate seeds coated with organic species formed from the photo-oxidation of á-pinene was conducted. This investigation was driven by a desire to understand the influence of atmospherically prevalent organics upon water uptake by material with cloud forming capabilities. Of particular note from this campaign were observed influences of partially soluble organic coatings upon inorganic ammonium sulphate seeds above and below their deliquescence relative humidity (DRH). Above the DRH of the seed increasing the volume fraction of the organic component was shown to reduce the water uptake of the mixed particle. Below the DRH the organic was shown to activate the water uptake of the seed. This was the first time this effect had been observed for á-pinene derived SOA. In contrast with the simulated aerosols generated at the PSI-LAC a case study of the volatile and hygroscopic properties of diesel emissions was undertaken. During this stage of the project ternary nucleation was shown, for the first time, to be one of the processes involved in formation of diesel particulate matter. Furthermore, these particles were shown to be coated with a volatile hydrophobic material which prevented the water uptake of the highly hygroscopic material below. This result was a first and indicated that previous studies into the hygroscopicity of diesel emission had erroneously reported the particles to be hydrophobic. Both of these results contradict the previously upheld Zdanovksii-Stokes-Robinson (ZSR) additive rule for water uptake by mixed species. This is an important contribution as it adds to the weight of evidence that limits the validity of this rule.
Resumo:
Information graphics have become increasingly important in representing, organising and analysing information in a technological age. In classroom contexts, information graphics are typically associated with graphs, maps and number lines. However, all students need to become competent with the broad range of graphics that they will encounter in mathematical situations. This paper provides a rationale for creating a test to measure students’ knowledge of graphics. This instrument can be used in mass testing and individual (in-depth) situations. Our analysis of the utility of this instrument informs policy and practice. The results provide an appreciation of the relative difficulty of different information graphics; and provide the capacity to benchmark information about students’ knowledge of graphics. The implications for practice include the need to support the development of students’ knowledge of graphics, the existence of gender differences, the role of cross-curriculum applications in learning about graphics, and the need to explicate the links among graphics.
Resumo:
This paper reports on the performance of 58 11 to 12-year-olds on a spatial visualization task and a spatial orientation task. The students completed these tasks and explained their thinking during individual interviews. The qualitative data were analysed to inform pedagogical content knowledge for spatial activities. The study revealed that “matching” or “matching and eliminating” were the typical strategies that students employed on these spatial tasks. However, errors in making associations between parts of the same or different shapes were noted. Students also experienced general difficulties with visual memory and language use to explain their thinking. The students’ specific difficulties in spatial visualization related to obscured items, the perspective used, and the placement and orientation of shapes.
Resumo:
This study investigated the longitudinal performance of 378 students who completed mathematics items rich in graphics. Specifically, this study explored student performance across axis (e.g., numbers lines), opposed-position (e.g., line and column graphs) and circular (e.g., pie charts) items over a three-year period (ages 9-11 years). The results of the study revealed significant performance differences in the favour of boys on graphics items that were represented in horizontal and vertical displays. There were no gender differences on items that were represented in a circular manner.
Resumo:
From an initial sample of 747 primary school students, the top 16 percent (n =116) with high self-esteem (HSE) and the bottom 15 percent (n = I1 I) with low selfesteem (LSE) were se/eeted. These two groups were then compared on personal and classroom variables. Significant differences were found for all personal (self-talk, selfconcepts) and classroom (teacher feedback, praise, teacher-student relationship, and classroom environment) variables. Students with HSE scored more highly on all variables. Discriminant Function Analysis (DFA) was then used to determine which variables discriminated between these two groups of students. Learner self-concept, positive and negative self-talk, classroom environment, and effort feedback were the best discriminators of students with high and low self-esteem. Implications for educational psychologists and teachers are discussed.
Resumo:
Routine postsurgery assessment of primary total hip arthroplasty (THA) is recommended in many countries. Whether the benefits of this activity are justified by the costs is not known. We used a decision-analytic Markov model to compare the costs and health outcomes of 3 different follow-up strategies after primary THA. If there is no routine follow-up of patients for 7 years after primary THA, there would be cost savings between AU$6.5 and $11.9 million and gains of between 1.8 and 8.8 quality-adjusted life years. Policy makers should investigate less resource-intensive alternatives to common routine postsurgical assessment.
Resumo:
A literature-based instrument gathered data about 147 final-year preservice teachers’ perceptions of their mentors’ practices related to primary mathematics teaching. Five factors characterized effective mentoring practices in primary mathematics teaching had acceptable Cronbach alphas, that is, Personal Attributes (mean scale score=3.97, SD [standard deviation]=0.81), System Requirements (mean scale score=2.98, SD=0.96), Pedagogical Knowledge (mean scale score=3.61, SD=0.89), Modelling (mean scale score=4.03, SD=0.73), and Feedback (mean scale score=3.80, SD=0.86) were .91, .74, .94, .89, and .86 respectively. Qualitative data (n=44) investigated mentors’ perceptions of mentoring these preservice teachers, including identification of successful mentoring practices and ways to enhance practices.