672 resultados para Prediction theory


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new deterministic method for predicting simultaneous inbreeding coefficients at three and four loci is presented. The method involves calculating the conditional probability of IBD (identical by descent) at one locus given IBD at other loci, and multiplying this probability by the prior probability of the latter loci being simultaneously IBD. The conditional probability is obtained applying a novel regression model, and the prior probability from the theory of digenic measures of Weir and Cockerham. The model was validated for a finite monoecious population mating at random, with a constant effective population size, and with or without selfing, and also for an infinite population with a constant intermediate proportion of selfing. We assumed discrete generations. Deterministic predictions were very accurate when compared with simulation results, and robust to alternative forms of implementation. These simultaneous inbreeding coefficients were more sensitive to changes in effective population size than in marker spacing. Extensions to predict simultaneous inbreeding coefficients at more than four loci are now possible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We predict here from first-principle calculations that finite-length (n,0) single walled carbon nanotubes (SWCNTs) with H-termination at the open ends displaying antiferromagnetic coupling when n is greater than 6. An opposite local gating effect of the spin states, i.e., half metallicity, is found under the influence of an external electric field along the direction of tube axis. Remarkably, boron doping of unpassivated SWCNTs at both zigzag edges is found to favor a ferromagnetic ground state, with the B-doped tubes displaying half-metallic behavior even in the absence of an electric field. Aside of the intrinsic interest of these results, an important avenue for development of CNT-based spintronic is suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The early warning based on real-time prediction of rain-induced instability of natural residual slopes helps to minimise human casualties due to such slope failures. Slope instability prediction is complicated, as it is influenced by many factors, including soil properties, soil behaviour, slope geometry, and the location and size of deep cracks in the slope. These deep cracks can facilitate rainwater infiltration into the deep soil layers and reduce the unsaturated shear strength of residual soil. Subsequently, it can form a slip surface, triggering a landslide even in partially saturated soil slopes. Although past research has shown the effects of surface-cracks on soil stability, research examining the influence of deep-cracks on soil stability is very limited. This study aimed to develop methodologies for predicting the real-time rain-induced instability of natural residual soil slopes with deep cracks. The results can be used to warn against potential rain-induced slope failures. The literature review conducted on rain induced slope instability of unsaturated residual soil associated with soil crack, reveals that only limited studies have been done in the following areas related to this topic: - Methods for detecting deep cracks in residual soil slopes. - Practical application of unsaturated soil theory in slope stability analysis. - Mechanistic methods for real-time prediction of rain induced residual soil slope instability in critical slopes with deep cracks. Two natural residual soil slopes at Jombok Village, Ngantang City, Indonesia, which are located near a residential area, were investigated to obtain the parameters required for the stability analysis of the slope. A survey first identified all related field geometrical information including slope, roads, rivers, buildings, and boundaries of the slope. Second, the electrical resistivity tomography (ERT) method was used on the slope to identify the location and geometrical characteristics of deep cracks. The two ERT array models employed in this research are: Dipole-dipole and Azimuthal. Next, bore-hole tests were conducted at different locations in the slope to identify soil layers and to collect undisturbed soil samples for laboratory measurement of the soil parameters required for the stability analysis. At the same bore hole locations, Standard Penetration Test (SPT) was undertaken. Undisturbed soil samples taken from the bore-holes were tested in a laboratory to determine the variation of the following soil properties with the depth: - Classification and physical properties such as grain size distribution, atterberg limits, water content, dry density and specific gravity. - Saturated and unsaturated shear strength properties using direct shear apparatus. - Soil water characteristic curves (SWCC) using filter paper method. - Saturated hydraulic conductivity. The following three methods were used to detect and simulate the location and orientation of cracks in the investigated slope: (1) The electrical resistivity distribution of sub-soil obtained from ERT. (2) The profile of classification and physical properties of the soil, based on laboratory testing of soil samples collected from bore-holes and visual observations of the cracks on the slope surface. (3) The results of stress distribution obtained from 2D dynamic analysis of the slope using QUAKE/W software, together with the laboratory measured soil parameters and earthquake records of the area. It was assumed that the deep crack in the slope under investigation was generated by earthquakes. A good agreement was obtained when comparing the location and the orientation of the cracks detected by Method-1 and Method-2. However, the simulated cracks in Method-3 were not in good agreement with the output of Method-1 and Method-2. This may have been due to the material properties used and the assumptions made, for the analysis. From Method-1 and Method-2, it can be concluded that the ERT method can be used to detect the location and orientation of a crack in a soil slope, when the ERT is conducted in very dry or very wet soil conditions. In this study, the cracks detected by the ERT were used for stability analysis of the slope. The stability of the slope was determined using the factor of safety (FOS) of a critical slip surface obtained by SLOPE/W using the limit equilibrium method. Pore-water pressure values for the stability analysis were obtained by coupling the transient seepage analysis of the slope using finite element based software, called SEEP/W. A parametric study conducted on the stability of an investigated slope revealed that the existence of deep cracks and their location in the soil slope are critical for its stability. The following two steps are proposed to predict the rain-induced instability of a residual soil slope with cracks. (a) Step-1: The transient stability analysis of the slope is conducted from the date of the investigation (initial conditions are based on the investigation) to the preferred date (current date), using measured rainfall data. Then, the stability analyses are continued for the next 12 months using the predicted annual rainfall that will be based on the previous five years rainfall data for the area. (b) Step-2: The stability of the slope is calculated in real-time using real-time measured rainfall. In this calculation, rainfall is predicted for the next hour or 24 hours and the stability of the slope is calculated one hour or 24 hours in advance using real time rainfall data. If Step-1 analysis shows critical stability for the forthcoming year, it is recommended that Step-2 be used for more accurate warning against the future failure of the slope. In this research, the results of the application of the Step-1 on an investigated slope (Slope-1) showed that its stability was not approaching a critical value for year 2012 (until 31st December 2012) and therefore, the application of Step-2 was not necessary for the year 2012. A case study (Slope-2) was used to verify the applicability of the complete proposed predictive method. A landslide event at Slope-2 occurred on 31st October 2010. The transient seepage and stability analyses of the slope using data obtained from field tests such as Bore-hole, SPT, ERT and Laboratory tests, were conducted on 12th June 2010 following the Step-1 and found that the slope in critical condition on that current date. It was then showing that the application of the Step-2 could have predicted this failure by giving sufficient warning time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solid-extracellular fluid interaction is believed to play an important role in the strain-rate dependent mechanical behaviors of shoulder articular cartilages. It is believed that the kangaroo shoulder joint is anatomically and biomechanically similar to human shoulder joint and it is easy to get in Australia. Therefore, the kangaroo humeral head cartilage was used as the suitable tissue for the study in this paper. Indentation tests from quasi-static (10-4/sec) to moderately high strain-rate (10-2/sec) on kangaroo humeral head cartilage tissues were conduced to investigate the strain-rate dependent behaviors. A finite element (FE) model was then developed, in which cartilage was conceptualized as a porous solid matrix filled with incompressible fluids. In this model, the solid matrix was modeled as an isotropic hyperelastic material and the percolating fluid follows Darcy’s law. Using inverse FE procedure, the constitutive parameters related to stiffness, compressibility of the solid matrix and permeability were obtained from the experimental results. The effect of solid-extracellular fluid interaction and drag force (the resistance to fluid movement) on strain-rate dependent behavior was investigated by comparing the influence of constant, strain dependent and strain-rate dependent permeability on FE model prediction. The newly developed porohyperelastic cartilage model with the inclusion of strain-rate dependent permeability was found to be able to predict the strain-rate dependent behaviors of cartilages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most standard algorithms for prediction with expert advice depend on a parameter called the learning rate. This learning rate needs to be large enough to fit the data well, but small enough to prevent overfitting. For the exponential weights algorithm, a sequence of prior work has established theoretical guarantees for higher and higher data-dependent tunings of the learning rate, which allow for increasingly aggressive learning. But in practice such theoretical tunings often still perform worse (as measured by their regret) than ad hoc tuning with an even higher learning rate. To close the gap between theory and practice we introduce an approach to learn the learning rate. Up to a factor that is at most (poly)logarithmic in the number of experts and the inverse of the learning rate, our method performs as well as if we would know the empirically best learning rate from a large range that includes both conservative small values and values that are much higher than those for which formal guarantees were previously available. Our method employs a grid of learning rates, yet runs in linear time regardless of the size of the grid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Newly licenced drivers are disproportionately represented in traffic injuries and crash statistics. Despite the implementation of countermeasures designed to improve safety, such as graduated driver licencing (GDL) schemes, many young drivers do not comply with road rules. This study used a reconceptualised deterrence theory framework to investigate young drivers’ perceptions of the enforcement of road rules in general and those more specifically related to GDL. A total of 236 drivers aged 17–24 completed a questionnaire assessing their perceptions of various deterrence mechanisms (personal and vicarious) and their compliance with both GDL-specific and general road rules. Hierarchical multiple regressions conducted to explore noncompliant behaviour revealed that, contrary to theoretical expectations, neither personal nor vicarious punishment experiences affected compliance in the expected direction. Instead, the most influential factors contributing to noncompliance were licence type (P2) and, counterintuitively, having previously been exposed to enforcement. Parental enforcement was also significant in the prediction of transient rule violations, but not fixed rule violations or overall noncompliance. Findings are discussed in light of several possibilities, including an increase in violations due to more time spent on the road, an ‘emboldening effect’ noted in prior studies and possible conceptual constraints regarding the deterrence variables examined in this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A quantum-spin-Hall (QSH) state was achieved experimentally, albeit at a low critical temperature because of the narrow band gap of the bulk material. Twodimensional topological insulators are critically important for realizing novel topological applications. Using density functional theory (DFT), we demonstrated that hydrogenated GaBi bilayers (HGaBi) form a stable topological insulator with a large nontrivial band gap of 0.320 eV, based on the state-of-the-art hybrid functional method, which is implementable for achieving QSH states at room temperature. The nontrivial topological property of the HGaBi lattice can also be confirmed from the appearance of gapless edge states in the nanoribbon structure. Our results provide a versatile platform for hosting nontrivial topological states usable for important nanoelectronic device applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Women with a disability continue to experience social oppression and domestic violence as a consequence of gender and disability dimensions. Current explanations of domestic violence and disability inadequately explain several features that lead women who have a disability to experience violent situations. This article incorporates both disability and material feminist theory as an alternative explanation to the dominant approaches (psychological and sociological traditions) of conceptualising domestic violence. This paper is informed by a study which was concerned with examining the nature and perceptions of violence against women with a physical impairment. The emerging analytical framework integrating material feminist interpretations and disability theory provided a basis for exploring gender and disability dimensions. Insight was also provided by the women who identified as having a disability in the study and who explained domestic violence in terms of a gendered and disabling experience. The article argues that material feminist interpretations and disability theory, with their emphasis on gender relations, disablism and poverty, should be used as an alternative tool for exploring the nature and consequences of violence against women with a disability.