351 resultados para Power supply


Relevância:

70.00% 70.00%

Publicador:

Resumo:

stract This paper proposes a hybrid discontinuous control methodology for a voltage source converter (VSC), which is used in an uninterrupted power supply (UPS) application. The UPS controls the voltage at the point of common coupling (PCC). An LC filter is connected at the output of the VSC to bypass switching harmonics. With the help of both filter inductor current and filter capacitor voltage control, the voltage across the filter capacitor is controlled. Based on the voltage error, the control is switched between current and voltage control modes. In this scheme, an extra diode state is used that makes the VSC output current discontinuous. This diode state reduces the switching losses. The UPS controls the active power it supplies to a three-phase, four-wire distribution system. This gives a full flexibility to the grid to buy power from the UPS system depending on its cost and load requirement at any given time. The scheme is validated through simulation using PSCAD.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Improving efficiency and flexibility in pulsed power supply technologies are the most substantial concerns of pulsed power systems specifically for plasma generation. Recently, the improvement of pulsed power supply becomes of greater concern due to extension of pulsed power applications to environmental and industrial areas. A current source based topology is proposed in this paper which gives the possibility of power flow control. The main contribution in this configuration is utilization of low-medium voltage semiconductor switches for high voltage generation. A number of switch-diode-capacitor units are designated at the output of topology to exchange the current source energy into voltage form and generate a pulsed power with sufficient voltage magnitude and stress. Simulations have been carried out in Matlab/SIMULINK platform to verify the capability of this topology in performing desired duties. Being efficient and flexible are the main advantages of this topology.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Trees, shrubs and other vegetation are of continued importance to the environment and our daily life. They provide shade around our roads and houses, offer a habitat for birds and wildlife, and absorb air pollutants. However, vegetation touching power lines is a risk to public safety and the environment, and one of the main causes of power supply problems. Vegetation management, which includes tree trimming and vegetation control, is a significant cost component of the maintenance of electrical infrastructure. For example, Ergon Energy, the Australia’s largest geographic footprint energy distributor, currently spends over $80 million a year inspecting and managing vegetation that encroach on power line assets. Currently, most vegetation management programs for distribution systems are calendar-based ground patrol. However, calendar-based inspection by linesman is labour-intensive, time consuming and expensive. It also results in some zones being trimmed more frequently than needed and others not cut often enough. Moreover, it’s seldom practicable to measure all the plants around power line corridors by field methods. Remote sensing data captured from airborne sensors has great potential in assisting vegetation management in power line corridors. This thesis presented a comprehensive study on using spiking neural networks in a specific image analysis application: power line corridor monitoring. Theoretically, the thesis focuses on a biologically inspired spiking cortical model: pulse coupled neural network (PCNN). The original PCNN model was simplified in order to better analyze the pulse dynamics and control the performance. Some new and effective algorithms were developed based on the proposed spiking cortical model for object detection, image segmentation and invariant feature extraction. The developed algorithms were evaluated in a number of experiments using real image data collected from our flight trails. The experimental results demonstrated the effectiveness and advantages of spiking neural networks in image processing tasks. Operationally, the knowledge gained from this research project offers a good reference to our industry partner (i.e. Ergon Energy) and other energy utilities who wants to improve their vegetation management activities. The novel approaches described in this thesis showed the potential of using the cutting edge sensor technologies and intelligent computing techniques in improve power line corridor monitoring. The lessons learnt from this project are also expected to increase the confidence of energy companies to move from traditional vegetation management strategy to a more automated, accurate and cost-effective solution using aerial remote sensing techniques.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A novel concept of producing high dc voltage for pulsed-power applications is proposed in this paper. The topology consists of an LC resonant circuit supplied through a tuned alternating waveform that is produced by an inverter. The control scheme is based on the detection of variations in the resonant frequency and adjustment of the switching signal patterns for the inverter to produce a square waveform with exactly the same frequencies. Therefore the capacitor voltage oscillates divergently with an increasing amplitude. A simple one-stage capacitor-diode voltage multiplier (CDVM) connected to the resonant capacitor then rectifies the alternating voltage and gives a dc level equal to twice the input voltage amplitude. The produced high voltage appears then in the form of high-voltage pulses across the load. A basic model is simulated by Simulink platform of MATLAB and the results are included in the paper.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Advances in solid-state switches and power electronics techniques have led to the development of compact, efficient and more reliable pulsed power systems. This paper proposes an efficient scheme that utilizes modular switch-capacitor units in obtaining high voltage levels with fast rise time (dv/dt) using low voltage solid-state switches. The proposed pulsed power supply has flexibility in terms of controlling energy and generating broad range of voltage levels. The energy flow can be controlled as the stored energy can be adjusted by a current source utilized at the first stage of the system. Desirable voltage level can be obtained by connecting adequate number of switch-capacitor units. Moreover, the proposed topology is load independent. Therefore it can easily supply wide range of applications especially the low impedance ones. The effectiveness of the proposed approach is verified by simulations

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nonthermal plasma (NTP) treatment of exhaust gas is a promising technology for both nitrogen oxides (NOX) and particulate matter (PM) reduction by introducing plasma into the exhaust gases. This paper considers the effect of NTP on PM mass reduction, PM size distribution, and PM removal efficiency. The experiments are performed on real exhaust gases from a diesel engine. The NTP is generated by applying high-voltage pulses using a pulsed power supply across a dielectric barrier discharge (DBD) reactor. The effects of the applied high-voltage pulses up to 19.44 kVpp with repetition rate of 10 kHz are investigated. In this paper, it is shown that the PM removal and PM size distribution need to be considered both together, as it is possible to achieve high PM removal efficiency with undesirable increase in the number of small particles. Regarding these two important factors, in this paper, 17 kVpp voltage level is determined to be an optimum point for the given configuration. Moreover, particles deposition on the surface of the DBD reactor is found to be a significant phenomenon, which should be considered in all plasma PM removal tests.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The auxiliary load DC-DC converters of the Sunshark solar car have never been examined. An analysis of the current design reveals it is complicated, and inefficient. Some simple measures to greatly improve the efficiency are present which will achieve an overall worthwhile power saving. Two switch-mode power supply DC-DC converter designs are presented. One is a constant current supply for the LED brake and turn indicators, which allows them to be powered directly from the main DC bus, and switched only as necessary. The second is a low power flyback converter, which employs synchronous rectification among other techniques to achieve good efficiency and regulation over a large range of output powers. Practical results from both converters, and an indication of the overall improvement in system efficiency will be offered.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A typical low power IPT system employs an H-Bridge converter with a simple control strategy to generate a high frequency current from DC power supply. This paper proposes a cascaded multilevel converter for bidirectional IPT (BIPT) systems, which is suitable for low to medium power applications as well as for situations such as PV cells where several individual DC sources are to be utilized. A novel modulation strategy is proposed for the multilevel converter with the aim of minimizing switching losses. Series - Series (SS) compensation circuit is adopted for the IPT system and a mathematical model is presented to minimize the coil losses of the system under varying output power. Theoretical results presented in comparison to the simulations to demonstrate the applicability of the proposed concept and the validity of the developed model. The experimental results show the feasibility of the proposed phase shift modulation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Available industrial energy meters offer high accuracy and reliability, but are typically expensive and low-bandwidth, making them poorly suited to multi-sensor data acquisition schemes and power quality analysis. An alternative measurement system is proposed in this paper that is highly modular, extensible and compact. To minimise cost, the device makes use of planar coreless PCB transformers to provide galvanic isolation for both power and data. Samples from multiple acquisition devices may be concentrated by a central processor before integration with existing host control systems. This paper focusses on the practical design and implementation of planar coreless PCB transformers to facilitate the module's isolated power, clock and data signal transfer. Calculations necessary to design coreless PCB transformers, and circuits designed for the transformer's practical application in the measurement module are presented. The designed transformer and each application circuit have been experimentally verified, with test data and conclusions made applicable to coreless PCB transformers in general.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Large sized power transformers are important parts of the power supply chain. These very critical networks of engineering assets are an essential base of a nation’s energy resource infrastructure. This research identifies the key factors influencing transformer normal operating conditions and predicts the asset management lifespan. Engineering asset research has developed few lifespan forecasting methods combining real-time monitoring solutions for transformer maintenance and replacement. Utilizing the rich data source from a remote terminal unit (RTU) system for sensor-data driven analysis, this research develops an innovative real-time lifespan forecasting approach applying logistic regression based on the Weibull distribution. The methodology and the implementation prototype are verified using a data series from 161 kV transformers to evaluate the efficiency and accuracy for energy sector applications. The asset stakeholders and suppliers significantly benefit from the real-time power transformer lifespan evaluation for maintenance and replacement decision support.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents the possibility of utilizing a current source topology instead of a voltage source as an efficient, flexible and reliable power supply for plasma applications. A buck-boost converter with a current controller has been used to transfer energy from an inductor to a plasma system. A control strategy has also been designed to satisfy all the desired purposes. The main concept behind this topology is to provide high dv/dt regardless of the switching speed of a power switch and to control the current level to properly transfer adequate energy to various plasma applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Assessment of the condition of connectors in the overhead electricity network has traditionally relied on the heat dissipation or voltage drop from existing load current (50Hz) as a measurable parameter to differentiate between satisfactory and failing connectors. This research has developed a technique which does not rely on the 50Hz current and a prototype connector tester has been developed. In this system a high frequency signal is injected into the section of line under test and measures the resistive voltage drop and the current at the test frequency to yield the resistance in micro-ohms. From the value of resistance a decision as to whether a connector is satisfactory or approaching failure can be made. Determining the resistive voltage drop in the presence of a large induced voltage was achieved by the innovative approach of using a representative sample of the magnetic flux producing the induced voltage as the phase angle reference for the signal processing rather than the phase angle of the current, which can be affected by the presence of nearby metal objects. Laboratory evaluation of the connector tester has validated the measurement technique. The magnitude of the load current (50Hz) has minimal effect on the measurement accuracy. Addition of a suitable battery based power supply system and isolated communications, probably radio and refinement of the printed circuit board design and software are the remaining development steps to a production instrument.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bearing damage in modern inverter-fed AC drive systems is more common than in motors working with 50 or 60 Hz power supply. Fast switching transients and common mode voltage generated by a PWM inverter cause unwanted shaft voltage and resultant bearing currents. Parasitic capacitive coupling creates a path to discharge current in rotors and bearings. In order to analyze bearing current discharges and their effect on bearing damage under different conditions, calculation of the capacitive coupling between the outer and inner races is needed. During motor operation, the distances between the balls and races may change the capacitance values. Due to changing of the thickness and spatial distribution of the lubricating grease, this capacitance does not have a constant value and is known to change with speed and load. Thus, the resultant electric field between the races and balls varies with motor speed. The lubricating grease in the ball bearing cannot withstand high voltages and a short circuit through the lubricated grease can occur. At low speeds, because of gravity, balls and shaft voltage may shift down and the system (ball positions and shaft) will be asymmetric. In this study, two different asymmetric cases (asymmetric ball position, asymmetric shaft position) are analyzed and the results are compared with the symmetric case. The objective of this paper is to calculate the capacitive coupling and electric fields between the outer and inner races and the balls at different motor speeds in symmetrical and asymmetrical shaft and balls positions. The analysis is carried out using finite element simulations to determine the conditions which will increase the probability of high rates of bearing failure due to current discharges through the balls and races.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The configuration proposed in this paper aims to generate high voltage for pulsed power applications. The main idea is to charge two groups of capacitors in parallel through an inductor and take the advantage of resonant phenomena in charging each capacitor up to a double input voltage level. In each resonant half a cycle, one of those capacitor groups are charged, and finally the charged capacitors will be connected together in series and the summation of the capacitor voltages can be appeared at the output of the topology. This topology can be considered as a modified Marx generator which works based on the resonant concept. Simulation models of this converter have been investigated in Matlab/SIMULINK platform and the attained results fully satisfy the proper operation of the converter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Probabilistic load flow techniques have been adopted in AC electrified railways to study the load demand under various train service conditions. This paper highlights the differences in probabilistic load flow analysis between the usual power systems and power supply systems in AC railways; discusses the possible difficulties in problem formulation and presents the link between train movement and the corresponding power demand for load flow calculation.