100 resultados para Portacaval anastomosis (PCA)
Resumo:
This overview focuses on the application of chemometrics techniques for the investigation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs) and metals because these two important and very diverse groups of pollutants are ubiquitous in soils. The salient features of various studies carried out in the micro- and recreational environments of humans, are highlighted in the context of the various multivariate statistical techniques available across discipline boundaries that have been effectively used in soil studies. Particular attention is paid to techniques employed in the geosciences that may be effectively utilized for environmental soil studies; classical multivariate approaches that may be used in isolation or as complementary methods to these are also discussed. Chemometrics techniques widely applied in atmospheric studies for identifying sources of pollutants or for determining the importance of contaminant source contributions to a particular site, have seen little use in soil studies, but may be effectively employed in such investigations. Suitable programs are also available for suggesting mitigating measures in cases of soil contamination, and these are also considered. Specific techniques reviewed include pattern recognition techniques such as Principal Components Analysis (PCA), Fuzzy Clustering (FC) and Cluster Analysis (CA); geostatistical tools include variograms, Geographical Information Systems (GIS), contour mapping and kriging; source identification and contribution estimation methods reviewed include Positive Matrix Factorisation (PMF), and Principal Component Analysis on Absolute Principal Component Scores (PCA/APCS). Mitigating measures to limit or eliminate pollutant sources may be suggested through the use of ranking analysis and multi criteria decision making methods (MCDM). These methods are mainly represented in this review by studies employing the Preference Ranking Organisation Method for Enrichment Evaluation (PROMETHEE) and its associated graphic output, Geometrical Analysis for Interactive Aid (GAIA).
Resumo:
An investigation into the effects of changes in urban traffic characteristics due to rapid urbanisation and the predicted changes in rainfall characteristics due to climate change on the build-up and wash-off of heavy metals was carried out in Gold Coast, Australia. The study sites encompassed three different urban land uses. Nine heavy metals commonly associated with traffic emissions were selected. The results were interpreted using multivariate data analysis and decision making tools, such as principal component analysis (PCA), fuzzy clustering (FC), PROMETHEE and GAIA. Initial analyses established high, low and moderate traffic scenarios as well as low, low to moderate, moderate, high and extreme rainfall scenarios for build-up and wash-off investigations. GAIA analyses established that moderate to high traffic scenarios could affect the build-up while moderate to high rainfall scenarios could affect the wash-off of heavy metals under changed conditions. However, in wash-off, metal concentrations in 1-75µm fraction were found to be independent of the changes to rainfall characteristics. In build-up, high traffic activities in commercial and industrial areas influenced the accumulation of heavy metal concentrations in particulate size range from 75 - >300 µm, whereas metal concentrations in finer size range of <1-75 µm were not affected. As practical implications, solids <1 µm and organic matter from 1 - >300 µm can be targeted for removal of Ni, Cu, Pb, Cd, Cr and Zn from build-up whilst organic matter from <1 - >300 µm can be targeted for removal of Cd, Cr, Pb and Ni from wash-off. Cu and Zn need to be removed as free ions from most fractions in wash-off.
Resumo:
Vehicular traffic in urban areas may adversely affect urban water quality through the build-up of traffic generated semi and non volatile organic compounds (SVOCs and NVOCs) on road surfaces. The characterisation of the build-up processes is the key to developing mitigation measures for the removal of such pollutants from urban stormwater. An in-depth analysis of the build-up of SVOCs and NVOCs was undertaken in the Gold Coast region in Australia. Principal Component Analysis (PCA) and Multicriteria Decision tools such as PROMETHEE and GAIA were employed to understand the SVOC and NVOC build-up under combined traffic scenarios of low, moderate, and high traffic in different land uses. It was found that congestion in the commercial areas and use of lubricants and motor oils in the industrial areas were the main sources of SVOCs and NVOCs on urban roads, respectively. The contribution from residential areas to the build-up of such pollutants was hardly noticeable. It was also revealed through this investigation that the target SVOCs and NVOCs were mainly attached to particulate fractions of 75 to 300 µm whilst the redistribution of coarse fractions due to vehicle activity mainly occurred in the >300 µm size range. Lastly, under combined traffic scenario, moderate traffic with average daily traffic ranging from 2300 to 5900 and average congestion of 0.47 was found to dominate SVOC and NVOC build-up on roads.
Resumo:
Human hair fibres are ubiquitous in nature and are found frequently at crime scenes often as a result of exchange between the perpetrator, victim and/or the surroundings according to Locard's Principle. Therefore, hair fibre evidence can provide important information for crime investigation. For human hair evidence, the current forensic methods of analysis rely on comparisons of either hair morphology by microscopic examination or nuclear and mitochondrial DNA analyses. Unfortunately in some instances the utilisation of microscopy and DNA analyses are difficult and often not feasible. This dissertation is arguably the first comprehensive investigation aimed to compare, classify and identify the single human scalp hair fibres with the aid of FTIR-ATR spectroscopy in a forensic context. Spectra were collected from the hair of 66 subjects of Asian, Caucasian and African (i.e. African-type). The fibres ranged from untreated to variously mildly and heavily cosmetically treated hairs. The collected spectra reflected the physical and chemical nature of a hair from the near-surface particularly, the cuticle layer. In total, 550 spectra were acquired and processed to construct a relatively large database. To assist with the interpretation of the complex spectra from various types of human hair, Derivative Spectroscopy and Chemometric methods such as Principal Component Analysis (PCA), Fuzzy Clustering (FC) and Multi-Criteria Decision Making (MCDM) program; Preference Ranking Organisation Method for Enrichment Evaluation (PROMETHEE) and Geometrical Analysis for Interactive Aid (GAIA); were utilised. FTIR-ATR spectroscopy had two important advantages over to previous methods: (i) sample throughput and spectral collection were significantly improved (no physical flattening or microscope manipulations), and (ii) given the recent advances in FTIR-ATR instrument portability, there is real potential to transfer this work.s findings seamlessly to on-field applications. The "raw" spectra, spectral subtractions and second derivative spectra were compared to demonstrate the subtle differences in human hair. SEM images were used as corroborative evidence to demonstrate the surface topography of hair. It indicated that the condition of the cuticle surface could be of three types: untreated, mildly treated and treated hair. Extensive studies of potential spectral band regions responsible for matching and discrimination of various types of hair samples suggested the 1690-1500 cm-1 IR spectral region was to be preferred in comparison with the commonly used 1750-800 cm-1. The principal reason was the presence of the highly variable spectral profiles of cystine oxidation products (1200-1000 cm-1), which contributed significantly to spectral scatter and hence, poor hair sample matching. In the preferred 1690-1500 cm-1 region, conformational changes in the keratin protein attributed to the α-helical to β-sheet transitions in the Amide I and Amide II vibrations and played a significant role in matching and discrimination of the spectra and hence, the hair fibre samples. For gender comparison, the Amide II band is significant for differentiation. The results illustrated that the male hair spectra exhibit a more intense β-sheet vibration in the Amide II band at approximately 1511 cm-1 whilst the female hair spectra displayed more intense α-helical vibration at 1520-1515cm-1. In terms of chemical composition, female hair spectra exhibit greater intensity of the amino acid tryptophan (1554 cm-1), aspartic and glutamic acid (1577 cm-1). It was also observed that for the separation of samples based on racial differences, untreated Caucasian hair was discriminated from Asian hair as a result of having higher levels of the amino acid cystine and cysteic acid. However, when mildly or chemically treated, Asian and Caucasian hair fibres are similar, whereas African-type hair fibres are different. In terms of the investigation's novel contribution to the field of forensic science, it has allowed for the development of a novel, multifaceted, methodical protocol where previously none had existed. The protocol is a systematic method to rapidly investigate unknown or questioned single human hair FTIR-ATR spectra from different genders and racial origin, including fibres of different cosmetic treatments. Unknown or questioned spectra are first separated on the basis of chemical treatment i.e. untreated, mildly treated or chemically treated, genders, and racial origin i.e. Asian, Caucasian and African-type. The methodology has the potential to complement the current forensic analysis methods of fibre evidence (i.e. Microscopy and DNA), providing information on the morphological, genetic and structural levels.
Resumo:
Prostate cancer (PCa) and benign prostatic hyperplasia (BPH) are androgen-dependent diseases commonly treated by inhibiting androgen action. However, androgen ablation or castration fail to target androgen-independent cells implicated in disease etiology and recurrence. Mechanistically different to castration, this study shows beneficial proapoptotic actions of estrogen receptor–β (ERβ) in BPH and PCa. ERβ agonist induces apoptosis in prostatic stromal, luminal and castrate-resistant basal epithelial cells of estrogen-deficient aromatase knock-out mice. This occurs via extrinsic (caspase-8) pathways, without reducing serum hormones, and perturbs the regenerative capacity of the epithelium. TNFα knock-out mice fail to respond to ERβ agonist, demonstrating the requirement for TNFα signaling. In human tissues, ERβ agonist induces apoptosis in stroma and epithelium of xenografted BPH specimens, including in the CD133+ enriched putative stem/progenitor cells isolated from BPH-1 cells in vitro. In PCa, ERβ causes apoptosis in Gleason Grade 7 xenografted tissues and androgen-independent cells lines (PC3 and DU145) via caspase-8. These data provide evidence of the beneficial effects of ERβ agonist on epithelium and stroma of BPH, as well as androgen-independent tumor cells implicated in recurrent disease. Our data are indicative of the therapeutic potential of ERβ agonist for treatment of PCa and/or BPH with or without androgen withdrawal.
An approach to statistical lip modelling for speaker identification via chromatic feature extraction
Resumo:
This paper presents a novel technique for the tracking of moving lips for the purpose of speaker identification. In our system, a model of the lip contour is formed directly from chromatic information in the lip region. Iterative refinement of contour point estimates is not required. Colour features are extracted from the lips via concatenated profiles taken around the lip contour. Reduction of order in lip features is obtained via principal component analysis (PCA) followed by linear discriminant analysis (LDA). Statistical speaker models are built from the lip features based on the Gaussian mixture model (GMM). Identification experiments performed on the M2VTS1 database, show encouraging results
Resumo:
Damage detection in structures has become increasingly important in recent years. While a number of damage detection and localization methods have been proposed, few attempts have been made to explore the structure damage with frequency response functions (FRFs). This paper illustrates the damage identification and condition assessment of a beam structure using a new frequency response functions (FRFs) based damage index and Artificial Neural Networks (ANNs). In practice, usage of all available FRF data as an input to artificial neural networks makes the training and convergence impossible. Therefore one of the data reduction techniques Principal Component Analysis (PCA) is introduced in the algorithm. In the proposed procedure, a large set of FRFs are divided into sub-sets in order to find the damage indices for different frequency points of different damage scenarios. The basic idea of this method is to establish features of damaged structure using FRFs from different measurement points of different sub-sets of intact structure. Then using these features, damage indices of different damage cases of the structure are identified after reconstructing of available FRF data using PCA. The obtained damage indices corresponding to different damage locations and severities are introduced as input variable to developed artificial neural networks. Finally, the effectiveness of the proposed method is illustrated and validated by using the finite element modal of a beam structure. The illustrated results show that the PCA based damage index is suitable and effective for structural damage detection and condition assessment of building structures.
Resumo:
Compressive Sensing (CS) is a popular signal processing technique, that can exactly reconstruct a signal given a small number of random projections of the original signal, provided that the signal is sufficiently sparse. We demonstrate the applicability of CS in the field of gait recognition as a very effective dimensionality reduction technique, using the gait energy image (GEI) as the feature extraction process. We compare the CS based approach to the principal component analysis (PCA) and show that the proposed method outperforms this baseline, particularly under situations where there are appearance changes in the subject. Applying CS to the gait features also avoids the need to train the models, by using a generalised random projection.
Resumo:
The predicted changes in rainfall characteristics due to climate change could adversely affect stormwater quality in highly urbanised coastal areas throughout the world. This in turn will exert a significant influence on the discharge of pollutants to estuarine and marine waters. Hence, an in-depth analysis of the effects of such changes on the wash-off of volatile organic compounds (VOCs) from urban roads in the Gold Coast region in Australia was undertaken. The rainfall characteristics were simulated using a rainfall simulator. Principal Component Analysis (PCA) and Multicriteria Decision tools such as PROMETHEE and GAIA were employed to understand the VOC wash-off under climate change. It was found that low, low to moderate and high rain events due to climate change will affect the wash-off of toluene, ethylbenzene, meta-xylene, para-xylene and ortho-xylene from urban roads in Gold Coast. Total organic carbon (TOC) was identified as predominant carrier of toluene, meta-xylene and para-xylene in <1µm to 150µm fractions and for ethylbenzene in 150µm to >300µm fractions under such dominant rain events due to climate change. However, ortho-xylene did not show such affinity towards either TOC or TSS (total suspended solids) under the simulated climatic conditions.
Resumo:
The conventional manual power line corridor inspection processes that are used by most energy utilities are labor-intensive, time consuming and expensive. Remote sensing technologies represent an attractive and cost-effective alternative approach to these monitoring activities. This paper presents a comprehensive investigation into automated remote sensing based power line corridor monitoring, focusing on recent innovations in the area of increased automation of fixed-wing platforms for aerial data collection, and automated data processing for object recognition using a feature fusion process. Airborne automation is achieved by using a novel approach that provides improved lateral control for tracking corridors and automatic real-time dynamic turning for flying between corridor segments, we call this approach PTAGS. Improved object recognition is achieved by fusing information from multi-sensor (LiDAR and imagery) data and multiple visual feature descriptors (color and texture). The results from our experiments and field survey illustrate the effectiveness of the proposed aircraft control and feature fusion approaches.
Resumo:
Photochemistry has made significant contributions to our understanding of many important natural processes as well as the scientific discoveries of the man-made world. The measurements from such studies are often complex and may require advanced data interpretation with the use of multivariate or chemometrics methods. In general, such methods have been applied successfully for data display, classification, multivariate curve resolution and prediction in analytical chemistry, environmental chemistry, engineering, medical research and industry. However, in photochemistry, by comparison, applications of such multivariate approaches were found to be less frequent although a variety of methods have been used, especially with spectroscopic photochemical applications. The methods include Principal Component Analysis (PCA; data display), Partial Least Squares (PLS; prediction), Artificial Neural Networks (ANN; prediction) and several models for multivariate curve resolution related to Parallel Factor Analysis (PARAFAC; decomposition of complex responses). Applications of such methods are discussed in this overview and typical examples include photodegradation of herbicides, prediction of antibiotics in human fluids (fluorescence spectroscopy), non-destructive in- and on-line monitoring (near infrared spectroscopy) and fast-time resolution of spectroscopic signals from photochemical reactions. It is also quite clear from the literature that the scope of spectroscopic photochemistry was enhanced by the application of chemometrics. To highlight and encourage further applications of chemometrics in photochemistry, several additional chemometrics approaches are discussed using data collected by the authors. The use of a PCA biplot is illustrated with an analysis of a matrix containing data on the performance of photocatalysts developed for water splitting and hydrogen production. In addition, the applications of the Multi-Criteria Decision Making (MCDM) ranking methods and Fuzzy Clustering are demonstrated with an analysis of water quality data matrix. Other examples of topics include the application of simultaneous kinetic spectroscopic methods for prediction of pesticides, and the use of response fingerprinting approach for classification of medicinal preparations. In general, the overview endeavours to emphasise the advantages of chemometrics' interpretation of multivariate photochemical data, and an Appendix of references and summaries of common and less usual chemometrics methods noted in this work, is provided. Crown Copyright © 2010.
Resumo:
This paper illustrates the damage identification and condition assessment of a three story bookshelf structure using a new frequency response functions (FRFs) based damage index and Artificial Neural Networks (ANNs). A major obstacle of using measured frequency response function data is a large size input variables to ANNs. This problem is overcome by applying a data reduction technique called principal component analysis (PCA). In the proposed procedure, ANNs with their powerful pattern recognition and classification ability were used to extract damage information such as damage locations and severities from measured FRFs. Therefore, simple neural network models are developed, trained by Back Propagation (BP), to associate the FRFs with the damage or undamaged locations and severity of the damage of the structure. Finally, the effectiveness of the proposed method is illustrated and validated by using the real data provided by the Los Alamos National Laboratory, USA. The illustrated results show that the PCA based artificial Neural Network method is suitable and effective for damage identification and condition assessment of building structures. In addition, it is clearly demonstrated that the accuracy of proposed damage detection method can also be improved by increasing number of baseline datasets and number of principal components of the baseline dataset.
Resumo:
Damage detection in structures has become increasingly important in recent years. While a number of damage detection and localization methods have been proposed, very few attempts have been made to explore the structure damage with noise polluted data which is unavoidable effect in real world. The measurement data are contaminated by noise because of test environment as well as electronic devices and this noise tend to give error results with structural damage identification methods. Therefore it is important to investigate a method which can perform better with noise polluted data. This paper introduces a new damage index using principal component analysis (PCA) for damage detection of building structures being able to accept noise polluted frequency response functions (FRFs) as input. The FRF data are obtained from the function datagen of MATLAB program which is available on the web site of the IASC-ASCE (International Association for Structural Control– American Society of Civil Engineers) Structural Health Monitoring (SHM) Task Group. The proposed method involves a five-stage process: calculation of FRFs, calculation of damage index values using proposed algorithm, development of the artificial neural networks and introducing damage indices as input parameters and damage detection of the structure. This paper briefly describes the methodology and the results obtained in detecting damage in all six cases of the benchmark study with different noise levels. The proposed method is applied to a benchmark problem sponsored by the IASC-ASCE Task Group on Structural Health Monitoring, which was developed in order to facilitate the comparison of various damage identification methods. The illustrated results show that the PCA-based algorithm is effective for structural health monitoring with noise polluted FRFs which is of common occurrence when dealing with industrial structures.