59 resultados para Portable equipment
Resumo:
This paper reports on a six month longitudinal study exploring people’s personal and social emotional experience with health related portable interactive devices (PIDs). The focus is on emotions and how health PIDs mediate this experience in everyday contexts. The study reported here is an extension of a previous experiment conducted by the authors exploring media related PIDs [1]. The findings identified interesting aspects of health device interaction. Findings revealed people interact with health PIDs emotionally both at a personal and a social level. However, in contrast to media PIDs, participants reported significantly less social experiences than personal experiences. Nevertheless, the social level plays an important role such that negative social experiences had a significant influence on the perceived emotional experience over the course of six months. When no negative social experiences were reported the emotional experience over the course of six months became neutral. The findings are discussed in regards to their significance to the field of design, their implication for future health PID design and future research directions.
Resumo:
The modern society has come to expect the electrical energy on demand, while many of the facilities in power systems are aging beyond repair and maintenance. The risk of failure is increasing with the aging equipments and can pose serious consequences for continuity of electricity supply. As the equipments used in high voltage power networks are very expensive, economically it may not be feasible to purchase and store spares in a warehouse for extended periods of time. On the other hand, there is normally a significant time before receiving equipment once it is ordered. This situation has created a considerable interest in the evaluation and application of probability methods for aging plant and provisions of spares in bulk supply networks, and can be of particular importance for substations. Quantitative adequacy assessment of substation and sub-transmission power systems is generally done using a contingency enumeration approach which includes the evaluation of contingencies, classification of the contingencies based on selected failure criteria. The problem is very complex because of the need to include detailed modelling and operation of substation and sub-transmission equipment using network flow evaluation and to consider multiple levels of component failures. In this thesis a new model associated with aging equipment is developed to combine the standard tools of random failures, as well as specific model for aging failures. This technique is applied in this thesis to include and examine the impact of aging equipments on system reliability of bulk supply loads and consumers in distribution network for defined range of planning years. The power system risk indices depend on many factors such as the actual physical network configuration and operation, aging conditions of the equipment, and the relevant constraints. The impact and importance of equipment reliability on power system risk indices in a network with aging facilities contains valuable information for utilities to better understand network performance and the weak links in the system. In this thesis, algorithms are developed to measure the contribution of individual equipment to the power system risk indices, as part of the novel risk analysis tool. A new cost worth approach was developed in this thesis that can make an early decision in planning for replacement activities concerning non-repairable aging components, in order to maintain a system reliability performance which economically is acceptable. The concepts, techniques and procedures developed in this thesis are illustrated numerically using published test systems. It is believed that the methods and approaches presented, substantially improve the accuracy of risk predictions by explicit consideration of the effect of equipment entering a period of increased risk of a non-repairable failure.
Resumo:
This paper presents a preliminary crash avoidance framework for heavy equipment control systems. Safe equipment operation is a major concern on construction sites since fatal on-site injuries are an industry-wide problem. The proposed framework has potential for effecting active safety for equipment operation. The framework contains algorithms for spatial modeling, object tracking, and path planning. Beyond generating spatial models in fractions of seconds, these algorithms can successfully track objects in an environment and produce a collision-free 3D motion trajectory for equipment.
Resumo:
The purpose of this preliminary study was to determine the relevance of the categorization of the load regime data to assess the functional output and usage of the prosthesis of lower limb amputees. The objectives were a) to introduce a categorization of load regime, b) to present some descriptors of each activity, and c) to report the results for a case. The load applied on the osseointegrated fixation of one transfemoral amputee was recorded using a portable kinetic system for 5 hours. The periods of directional locomotion, localized locomotion, and stationary loading occurred 44%, 34%, and 22% of recording time and each accounted for 51%, 38%, and 12% of the duration of the periods of activity, respectively. The absolute maximum force during directional locomotion, localized locomotion, and stationary loading was 19%, 15%, and 8% of the body weight on the anteroposterior axis, 20%, 19%, and 12% on the mediolateral axis, and 121%, 106%, and 99% on the long axis. A total of 2,783 gait cycles were recorded. Approximately 10% more gait cycles and 50% more of the total impulse than conventional analyses were identified. The proposed categorization and apparatus have the potential to complement conventional instruments, particularly for difficult cases.
Resumo:
In the long term, with development of skill, knowledge, exposure and confidence within the engineering profession, rigorous analysis techniques have the potential to become a reliable and far more comprehensive method for design and verification of the structural adequacy of OPS, write Nimal J Perera, David P Thambiratnam and Brian Clark. This paper explores the potential to enhance operator safety of self-propelled mechanical plant subjected to roll over and impact of falling objects using the non-linear and dynamic response simulation capabilities of analytical processes to supplement quasi-static testing methods prescribed in International and Australian Codes of Practice for bolt on Operator Protection Systems (OPS) that are post fitted. The paper is based on research work carried out by the authors at the Queensland University of Technology (QUT) over a period of three years by instrumentation of prototype tests, scale model tests in the laboratory and rigorous analysis using validated Finite Element (FE) Models. The FE codes used were ABAQUS for implicit analysis and LSDYNA for explicit analysis. The rigorous analysis and dynamic simulation technique described in the paper can be used to investigate the structural response due to accident scenarios such as multiple roll over, impact of multiple objects and combinations of such events and thereby enhance the safety and performance of Roll Over and Falling Object Protection Systems (ROPS and FOPS). The analytical techniques are based on sound engineering principles and well established practice for investigation of dynamic impact on all self propelled vehicles. They are used for many other similar applications where experimental techniques are not feasible.
Resumo:
This paper reports on a six month longitudinal study exploring people’s emotional experience with two categories of portable interactive devices (PIDs); media and health related PIDs. The focus is on emotions and how PIDs mediate these experiences in everyday contexts. Previous findings presented by the authors (Gomez 2009, 2010) revealed that people’s emotional experiences with PIDs over time are influenced by whether interactions were at a personal or social level. This paper presents four categories of activities identified and their relationship to emotional experiences with PIDs that have been developed through further analysis of the data. It concludes with a discussion of the findings and their implications to the field of Design on the design of future PIDs.
Resumo:
The purpose of this paper is to study the profiling of property, plant and equipment (PPE) contributions in Australia and Malaysia construction companies. A company’s worth is usually based on the listed share price on the stock exchange. In arriving at the net profit, the contribution of PPE in the company’s assets is somehow being neglected. This paper will investigate the followings; firstly the level of PPE contribution in the construction firms by comparing the PPE contributions to the company’s asset as a whole which includes fixed (non-current) assets and current assets. This will determine the true strength of the companies, rather than relying on the share prices alone. Secondly, the paper will determine the trend of company’s asset ownership to show the company’s performance of the PPE ownership during the period of study. The data is based on the selected construction companies listed on the Australian Stock Exchange (ASX) and Malaysian Stock Exchange, known as Bursa Malaysia. The profiling will help to determine the strength of the construction firms based on the PPE holding, and the level of PPE ownerships in the two countries construction firms during the period of study.
Resumo:
Melodic alarms proposed in the IEC 60601-1-8 standard for medical electrical equipment were tested for learnability and discriminability. Thirty-three non-anaesthetist participants learned the alarms over two sessions of practice, with or without mnemonics suggested in the standard. Fewer than 30% of participants could identify the alarms with 100% accuracy at the end of practice. Confusions persisted between pairs of alarms, especially if mnemonics were used during learning (p = 0.011). Participants responded faster (p < 0.00001) and more accurately (p = 0.002) to medium priority alarms than to high priority alarms, even though they rated the high priority alarms as sounding more urgent (p < 0.00001). Participants with at least 1 year of formal musical training identified the alarms more accurately (p = 0.0002) than musically untrained participants, and found the task easier overall (p < 0.00001). More intensive studies of the IEC 60601-1-8 alarms are needed for their effectiveness to be determined.
Resumo:
Raman spectroscopy, when used in spatially offset mode, has become a potential tool for the identification of explosives and other hazardous substances concealed in opaque containers. The molecular fingerprinting capability of Raman spectroscopy makes it an attractive tool for the unambiguous identification of hazardous substances in the field. Additionally, minimal sample preparation is required compared with other techniques. We report a field portable time resolved Raman sensor for the detection of concealed chemical hazards in opaque containers. The new sensor uses a pulsed nanosecond laser source in conjunction with an intensified CCD detector. The new sensor employs a combination of time and space resolved Raman spectroscopy to enhance the detection capability. The new sensor can identify concealed hazards by a single measurement without any chemometric data treatments.
Resumo:
There are several popular soil moisture measurement methods today such as time domain reflectometry, electromagnetic (EM) wave, electrical and acoustic methods. Significant studies have been dedicated in developing method of measurements using those concepts, especially to achieve the characteristics of noninvasiveness. EM wave method provides an advantage because it is non-invasive to the soil and does not need to utilise probes to penetrate or bury in the soil. But some EM methods are also too complex, expensive, and not portable for the application of Wireless Sensor Networks; for example satellites or UAV (Unmanned Aerial Vehicle) based sensors. This research proposes a method in detecting changes in soil moisture using soil-reflected electromagnetic (SREM) wave from Wireless Sensor Networks (WSNs). Studies have shown that different levels of soil moisture will affects soil’s dielectric properties, such as relative permittivity and conductivity, and in turns change its reflection coefficients. The SREM wave method uses a transmitter adjacent to a WSNs node with purpose exclusively to transmit wireless signals that will be reflected by the soil. The strength from the reflected signal that is determined by the soil’s reflection coefficients is used to differentiate the level of soil moisture. The novel nature of this method comes from using WSNs communication signals to perform soil moisture estimation without the need of external sensors or invasive equipment. This innovative method is non-invasive, low cost and simple to set up. There are three locations at Brisbane, Australia chosen as the experiment’s location. The soil type in these locations contains 10–20% clay according to the Australian Soil Resource Information System. Six approximate levels of soil moisture (8, 10, 13, 15, 18 and 20%) are measured at each location; with each measurement consisting of 200 data. In total 3600 measurements are completed in this research, which is sufficient to achieve the research objective, assessing and proving the concept of SREM wave method. These results are compared with reference data from similar soil type to prove the concept. A fourth degree polynomial analysis is used to generate an equation to estimate soil moisture from received signal strength as recorded by using the SREM wave method.
Resumo:
Dengue virus is the most significant human viral pathogen spread by the bite of an infected mosquito. With no vaccine or antiviral therapy currently available, disease prevention relies largely on surveillance and mosquito control. Preventing the onset of dengue outbreaks and effective vector management would be considerably enhanced through surveillance of dengue virus prevalence in natural mosquito populations. However, current approaches to the identification of virus in field-caught mosquitoes require relatively slow and labor intensive techniques such as virus isolation or RT-PCR involving specialized facilities and personnel. A rapid and portable method for detecting dengue virus-infected mosquitoes is described. Using a hand held battery operated homogenizer and a dengue diagnostic rapid strip the viral protein NS1 was detected as a marker of dengue virus infection. This method could be performed in less than 30 min in the field, requiring no downstream processing, and is able to detect a single infected mosquito in a pool of at least 50 uninfected mosquitoes. The method described in this study allows rapid, real-time monitoring of dengue virus presence in mosquito populations and could be a useful addition to effective monitoring and vector control responses.
Resumo:
Positive emotions are central to human life and have implications to the overall quality of people's life (Fredrickson, 1998). This paper reports on positive experiences with two types of portable interactive devices (PIDs), specifically media/entertainment and medical/health devices. The study is based on a six-month longitudinal study exploring people's emotional experience and how PIDs mediate these experiences in everyday contexts. Previous findings by the authors (Gomez, Popovic & Blackler, 2011) presented four categories of activities including Feature, Functional, Mediation and Auxiliary activities and their relationship to emotional experience. The paper presents emotional experiences with specific activities reported with a focus on positive emotions. It concludes with a discussion of the findings on positive experiences and the implications for the future design of PIDs.