98 resultados para Polymerase chain reaction (PCR)
Resumo:
AIMS: To investigate the evolutionary origins of Australian healthcare-associated (HCA) methicillin-resistant Staphylococcus aureus (MRSA) strains from a panel of historical isolates typed using current genotyping techniques. METHODS: Nineteen MRSA isolates from 1965 to 1981 were examined and antibiotic susceptibility profiles determined. Genetic characterisation included real-time (RT) polymerase chain reaction (PCR) assays to identify single nucleotide polymorhpism (SNP) clonal complexes (SNP CC) and sequence type (SNP ST), multi locus sequence typing (MLST) and staphylococcal chromosomal cassette mec typing. RESULTS: All SNP CC30 isolates belonged to a novel sequence type, ST2249. All SNP CC239 isolates were confirmed as ST239-MRSA-III, except for a new single locus variant of ST239, ST2275. A further new type, ST2276, was identified. CONCLUSIONS: The earliest MRSA examined from 1965 was confirmed as ST250-MRSA-I, consistent with archaic European types. Identification of ST1-MRSA-IV in 1981 is the earliest appearance of this clinically important lineage which manifested in Australia and the United States in the 1990s. A previously unknown multi-resistant clone, ST2249-MRSA-III, was identified from 1973. Gentamicin resistance first appeared in this novel strain from 1976 and not ST239 as previously suspected. Thus, ST2249 was present in the earliest phase of the HCA MRSA epidemic in eastern Australia and was perhaps related to the emergence of the globally epidemic strain ST239.
Human breast cancer cell metastasis to long bone and soft organs of nude mice : a quantitative assay
Resumo:
Bone is a common metastatic site in human breast cancer (HBC). Since bone metastasis occurs very rarely from current spontaneous or experimental metastasis models of HBC cells in nude mice, an arterial seeding model involving the direct injection of the cells into the left ventricle has been developed to better understand the mechanisms involved in this process. We present here a sensitive polymerase chain reaction (PCR) method to detect and quantitate bone and soft organ metastasis in nude mice which have been intracardially inoculated with Lac Z transduced HBC cells. Amplification of genomically incorporated Lac Z sequences in MDA-MB-231-BAG HBC cells enables us to specifically detect these cells in mouse organs and bones. We have also created a competitive template to use as an internal standard in the PCR reactions, allowing us to better quantitate levels of HBC metastasis. The results of this PCR detection method correlate well with cell culture detection from alternate long bones from the same mice, and are more sensitive than gross Lac Z staining with X-gal or routine histology. Comparable qualitative results were obtained with PCR and culture in a titration experiment in which mice were inoculated with increasing numbers of cells, but PCR is more quantifiable, less time consuming, and less expensive. This assay can be employed to study the molecular and cellular aspects of bone metastasis, and could easily be used in conjunction with RT-PCR-based analyses of gene products which may be involved with HBC metastasis.
Resumo:
Background Many countries are scaling up malaria interventions towards elimination. This transition changes demands on malaria diagnostics from diagnosing ill patients to detecting parasites in all carriers including asymptomatic infections and infections with low parasite densities. Detection methods suitable to local malaria epidemiology must be selected prior to transitioning a malaria control programme to elimination. A baseline malaria survey conducted in Temotu Province, Solomon Islands in late 2008, as the first step in a provincial malaria elimination programme, provided malaria epidemiology data and an opportunity to assess how well different diagnostic methods performed in this setting. Methods During the survey, 9,491 blood samples were collected and examined by microscopy for Plasmodium species and density, with a subset also examined by polymerase chain reaction (PCR) and rapid diagnostic tests (RDTs). The performances of these diagnostic methods were compared. Results A total of 256 samples were positive by microscopy, giving a point prevalence of 2.7%. The species distribution was 17.5% Plasmodium falciparum and 82.4% Plasmodium vivax. In this low transmission setting, only 17.8% of the P. falciparum and 2.9% of P. vivax infected subjects were febrile (≥38°C) at the time of the survey. A significant proportion of infections detected by microscopy, 40% and 65.6% for P. falciparum and P. vivax respectively, had parasite density below 100/μL. There was an age correlation for the proportion of parasite density below 100/μL for P. vivax infections, but not for P. falciparum infections. PCR detected substantially more infections than microscopy (point prevalence of 8.71%), indicating a large number of subjects had sub-microscopic parasitemia. The concordance between PCR and microscopy in detecting single species was greater for P. vivax (135/162) compared to P. falciparum (36/118). The malaria RDT detected the 12 microscopy and PCR positive P. falciparum, but failed to detect 12/13 microscopy and PCR positive P. vivax infections. Conclusion Asymptomatic malaria infections and infections with low and sub-microscopic parasite densities are highly prevalent in Temotu province where malaria transmission is low. This presents a challenge for elimination since the large proportion of the parasite reservoir will not be detected by standard active and passive case detection. Therefore effective mass screening and treatment campaigns will most likely need more sensitive assays such as a field deployable molecular based assay.
Resumo:
Fifty-nine persons with industrial handling of low levels of acrylonitrile (AN) were studied. As part of a medical surveillance programme an extended haemoglobin adduct monitoring [N-(cyanoethyl)valine, CEV; N- (methyl)valine, MV; N-(hydroxyethyl)valine, HEV] was performed. Moreover, the genetic states of the polymorphic glutathione transferases GSTM1 and GSTT1 were assayed by polymerase chain reaction (PCR). Repetitive analyses of CEV and MV in subsequent years resulted in comparable values (means, 59.8 and 70.3 μg CEV/1 blood; 6.7 and 6.7 μg MV/1 blood). Hence, the industrial AN exposures were well below current official standards. Monitoring the haemoglobin adduct CEV appears as a suitable means of biomonitoring and medical surveillance under such exposure conditions. There was also no apparent correlation between the CEV and HEV or CEV and MV adduct levels. The MV and HEV values observed represented background levels, which apparently are not related to any occupational chemical exposure. There was no consistent effect of the genetic GSTM1 or GSTT1 state on CEV adduct levels induced by acrylonitrile exposure. Therefore, neither GSTM1 nor GSTT1 appears as a major AN metabolizing isoenzyme in humans. The low and physiological background levels of MV were also not influenced by the genetic GSTM1 state, but the MV adduct levels tended to be higher in GSTT1- individuals compared to GSTT1 + persons. With respect to the background levels of HEV adducts observed, there was no major influence of the GSTM1 state, but GST- individuals displayed adduct levels that were about 1/3 higher than those of GSTT1+ individuals. The coincidence with known differences in rates of background sister chromatid exchange between GSTT1- and GSTT1 + persons suggests that the lower ethylene oxide (EO) detoxification rate in GSTT1- persons, indicated by elevated blood protein hydroxyethyl adduct levels, leads to an increased genotoxic effect of the physiological EO background.
Resumo:
Background Sub-microscopic (SM) Plasmodium infections represent transmission reservoirs that could jeopardise malaria elimination goals. A better understanding of the epidemiology of these infections and factors contributing to their occurrence will inform effective elimination strategies. While the epidemiology of SM P. falciparum infections has been documented, that of SM P. vivax infections has not been summarised. The objective of this study is to address this deficiency. Methodology/Principal Findings A systematic search of PubMed was conducted, and results of both light microscopy (LM) and polymerase chain reaction (PCR)-based diagnostic tests for P. vivax from 44 cross-sectional surveys or screening studies of clinical malaria suspects were analysed. Analysis revealed that SM P. vivax is prevalent across different geographic areas with varying transmission intensities. On average, the prevalence of SM P. vivax in cross-sectional surveys was 10.9%, constituting 67.0% of all P. vivax infections detected by PCR. The relative proportion of SM P. vivax is significantly higher than that of the sympatric P. falciparum in these settings. A positive relationship exists between PCR and LM P. vivax prevalence, while there is a negative relationship between the proportion of SM P. vivax and the LM prevalence for P. vivax. Amongst clinical malaria suspects, however, SM P. vivax was not identified. Conclusions/Significance SM P. vivax is prevalent across different geographic areas, particularly areas with relatively low transmission intensity. Diagnostic tools with sensitivity greater than that of LM are required for detecting these infection reservoirs. In contrast, SM P. vivax is not prevalent in clinical malaria suspects, supporting the recommended use of quality LM and rapid diagnostic tests in clinical case management. These findings enable malaria control and elimination programs to estimate the prevalence and proportion of SM P. vivax infections in their settings, and develop appropriate elimination strategies to tackle SM P. vivax to interrupt transmission.
Resumo:
Background Diabetic foot ulceration (DFU) is a multifactorial process and is responsible for considerable morbidity and contributes to the increasing cost of health care worldwide. The diagnosis and identification of these ulcers remains a complex problem. Bacterial infection is promoted in the diabetic foot wound by decreased vascular supply and impaired host immune response. As conventional clinical microbiological methods are time-consuming and only identifies about 1% of the wound microbiota, detection of bacteria present in DFUs using molecular methods is highly advantageous and efficient. The aim of this study was to assess the virulence and methicillin resistance profiles of Staphylococcus aureus detected in DFUs using DNA-based methods. Methods A total of 223 swab samples were collected from 30 patients from March to October 2012. Bacterial DNA was extracted from the swab samples using standard procedures and was used to perform polymerase chain reaction (PCR) using specific oligonucleotide primers. The products were visualized using agarose gel electrophoresis. Results S. aureus was detected in 44.8% of samples. 25% of the S. aureus was methicillin-resistant S. aureus harboring the mecA gene. The alpha-toxin gene was present in 85% of the S. aureus positive samples. 61% of the S. aureus present in DFU samples harbored the exfoliatin factor A gene. Both the fibronectin factor A and fibronectin factor B gene were detected in 71% and 74% of the S. aureus positive samples. Conclusions DNA-based detection and characterization of bacteria in DFUs are rapid and efficient and can assist in accurate, targeted antibiotic therapy of DFU infections. The majority of S. aureus detected in this study were highly virulent and also resistant to methicillin. Further studies are required to understand the role of S. aureus in DFU trajectory.
Resumo:
Interleukin-10 (IL-10) is an important immunoregulatory cytokine produced by various types of cells. Researchers describe here the isolation and characterization of olive flounder IL-10 (ofIL-10) cDNA and genomic organization. The ofIL-10 gene encodes a 187 amino acid protein and is composed of a five exon/four intron structure, similar to other known IL-10 genes. The ofIL-10 promoter sequence analysis shows a high level of homology in putative binding sites for transcription factors which are sufficient for transcriptional regulation ofIL-10. Important structural residues are maintained in the ofIL-10 protein including the four cysteines responsible for the two intra-chain disulfide bridges reported for human IL-10 and two extra cysteine residues that exist only in fish species. The phylogenetic analysis clustered ofIL-10 with other fish IL-10s and apart from mammalian IL-10 molecules. Quantitative real-time Polymerase Chain Reaction (PCR) analysis demonstrated ubiquitous ofIL-10 gene expression in the 13 tissues examined. Additionally, the induction of ofIL-10 gene expression was observed in the kidney tissue from olive flounder infected with bacteria (Edawardsiella tarda) or virus (Viral Hemorrhagic Septicemia Virus; VHSV). These data indicate that IL-10 is an important immune regulator that is conserved strictly genomic organization and function during the evolution of vertebrate immunity.
Resumo:
Objectives. Strong genetic association of rheumatoid arthritis (RA) with PADI4 (peptidyl arginine deiminase) has previously been described in Japanese, although this was not confirmed in a subsequent study in the UK. We therefore undertook a further study of genetic association between PADI4 and RA in UK Caucasians and also studied expression of PADI4 in the peripheral blood of patients with RA. Methods. Seven single-nucleotide polymorphisms (SNP) were genotyped using polymerase chain reaction (PCR)-restriction fragment length polymorphism in 111 RA cases and controls. A marker significantly associated with RA (PADI4_100, rs#2240339) in this first data set (P = 0.03) was then tested for association in a larger group of 439 RA patients and 428 controls. PADI4 transcription was also assessed by real-time quantitative PCR using RNA extracted from peripheral blood mononuclear cells from 13 RA patients and 11 healthy controls. Results. A single SNP was weakly associated with RA (P = 0.03) in the initial case-control study, a single SNP (PADI4_100) and a two marker haplotype of that SNP and the neighbouring SNP (PADI4_04) were significantly associated with RA (P = 0.02 and P = 0.03 respectively). PADI4_100 was not associated with RA in a second sample set. PADI4 expression was four times greater in cases than controls (P = 0.004), but expression levels did not correlate with the levels of markers of inflammation. Conclusion. PADI4 is significantly overexpressed in the blood of RA patients but genetic variation within PADI4 is not a major risk factor for RA in Caucasians.
Resumo:
The cost effectiveness of antimicrobial stewardship (AMS) programmes was reviewed in hospital settings of Organisation for Economic Co-operation and Development (OECD) countries, and limited to adult patient populations. In each of the 36 studies, the type of AMS strategy and the clinical and cost outcomes were evaluated. The main AMS strategy implemented was prospective audit with intervention and feedback (PAIF), followed by the use of rapid technology, including rapid polymerase chain reaction (PCR)-based methods and matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) technology, for the treatment of bloodstream infections. All but one of the 36 studies reported that AMS resulted in a reduction in pharmacy expenditure. Among 27 studies measuring changes to health outcomes, either no change was reported post-AMS, or the additional benefits achieved from these outcomes were not quantified. Only two studies performed a full economic evaluation: one on a PAIF-based AMS intervention; and the other on use of rapid technology for the selection of appropriate treatment for serious Staphylococcus aureus infections. Both studies found the interventions to be cost effective. AMS programmes achieved a reduction in pharmacy expenditure, but there was a lack of consistency in the reported cost outcomes making it difficult to compare between interventions. A failure to capture complete costs in terms of resource use makes it difficult to determine the true cost of these interventions. There is an urgent need for full economic evaluations that compare relative changes both in clinical and cost outcomes to enable identification of the most cost-effective AMS strategies in hospitals.
Resumo:
Objective The human Ureaplasma species are the microbes most frequently isolated from placentae of women who deliver preterm. The role of Ureaplasma species has been investigated in pregnancies at <32 weeks of gestation, but currently no studies have determined the prevalence of ureaplasmas in moderately preterm and late-preterm (hereafter, “moderate/late preterm”) infants, the largest cohort of preterm infants. Methods Women delivering moderate/late preterm infants (n = 477) and their infants/placentae (n = 535) were recruited, and swab specimens of chorioamnion tissue, chorioamnion tissue specimens, and cord blood specimens were obtained at delivery. Swab and tissue specimens were cultured and analyzed by 16S ribosomal RNA polymerase chain reaction (PCR) for the presence of microorganisms, while cord blood specimens were analyzed for the presence of cytokines, chemokines, and growth factors. Results We detected microorganisms in 10.6% of 535 placentae (443 were delivered late preterm and 92 were delivered at term). Significantly, Ureaplasma species were the most prevalent microorganisms, and their presence alone was associated with histologically confirmed chorioamnionitis in moderate/late preterm and term placentae (P < .001). The presence of ureaplasmas in the chorioamnion was also associated with elevated levels of granulocyte colony-stimulating factor (P = .02). Conclusions These findings have important implications for infection and adverse pregnancy outcomes throughout gestation and should be of major consideration for obstetricians and neonatologists.
Resumo:
PCR-based cancer diagnosis requires detection of rare mutations in k- ras, p53 or other genes. The assumption has been that mutant and wild-type sequences amplify with near equal efficiency, so that they are eventually present in proportions representative of the starting material. Work on factor IX suggests that this assumption is invalid for one case of near- sequence identity. To test the generality of this phenomenon and its relevance to cancer diagnosis, primers distant from point mutations in p53 and k-ras were used to amplify wild-type and mutant sequences from these genes. A substantial bias against PCR amplification of mutants was observed for two regions of the p53 gene and one region of k-ras. For k-ras and p53, bias was observed when the wild-type and mutant sequences were amplified separately or when mixed in equal proportions before PCR. Bias was present with proofreading and non-proofreading polymerase. Mutant and wild-type segments of the factor V, cystic fibrosis transmembrane conductance regulator and prothrombin genes were amplified and did not exhibit PCR bias. Therefore, the assumption of equal PCR efficiency for point mutant and wild-type sequences is invalid in several systems. Quantitative or diagnostic PCR will require validation for each locus, and enrichment strategies may be needed to optimize detection of mutants.
Resumo:
Background Hyperhomocysteinemia as a consequence of the MTHFR 677 C > T variant is associated with cardiovascular disease and stroke. Another factor that can potentially contribute to these disorders is a depleted nitric oxide level, which can be due to the presence of eNOS +894 G > T and eNOS −786 T > C variants that make an individual more susceptible to endothelial dysfunction. A number of genotyping methods have been developed to investigate these variants. However, simultaneous detection methods using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis are still lacking. In this study, a novel multiplex PCR-RFLP method for the simultaneous detection of MTHFR 677 C > T and eNOS +894 G > T and eNOS −786 T > C variants was developed. A total of 114 healthy Malay subjects were recruited. The MTHFR 677 C > T and eNOS +894 G > T and eNOS −786 T > C variants were genotyped using the novel multiplex PCR-RFLP and confirmed by DNA sequencing as well as snpBLAST. Allele frequencies of MTHFR 677 C > T and eNOS +894 G > T and eNOS −786 T > C were calculated using the Hardy Weinberg equation. Methods The 114 healthy volunteers were recruited for this study, and their DNA was extracted. Primer pair was designed using Primer 3 Software version 0.4.0 and validated against the BLAST database. The primer specificity, functionality and annealing temperature were tested using uniplex PCR methods that were later combined into a single multiplex PCR. Restriction Fragment Length Polymorphism (RFLP) was performed in three separate tubes followed by agarose gel electrophoresis. PCR product residual was purified and sent for DNA sequencing. Results The allele frequencies for MTHFR 677 C > T were 0.89 (C allele) and 0.11 (T allele); for eNOS +894 G > T, the allele frequencies were 0.58 (G allele) and 0.43 (T allele); and for eNOS −786 T > C, the allele frequencies were 0.87 (T allele) and 0.13 (C allele). Conclusions Our PCR-RFLP method is a simple, cost-effective and time-saving method. It can be used to successfully genotype subjects for the MTHFR 677 C > T and eNOS +894 G > T and eNOS −786 T > C variants simultaneously with 100% concordance from DNA sequencing data. This method can be routinely used for rapid investigation of the MTHFR 677 C > T and eNOS +894 G > T and eNOS −786 T > C variants.
Resumo:
Background Members of the matrix metalloproteinase (MMP) family of proteases are required for the degradation of the basement membrane and extracellular matrix in both normal and pathological conditions. In vitro, MT1-MMP (MMP-14, membrane type-1-MMP) expression is higher in more invasive human breast cancer (HBC) cell lines, whilst in vivo its expression has been associated with the stroma surrounding breast tumours. MMP-1 (interstitial collagenase) has been associated with MDA-MB-231 invasion in vitro, while MMP-3 (stromelysin-1) has been localised around invasive cells of breast tumours in vivo. As MMPs are not stored intracellularly, the ability to localise their expression to their cells of origin is difficult. Methods We utilised the unique in situ-reverse transcription-polymerase chain reaction (IS-RT-PCR) methodology to localise the in vitro and in vivo gene expression of MT1-MMP, MMP-1 and MMP-3 in human breast cancer. In vitro, MMP induction was examined in the MDA-MB-231 and MCF-7 HBC cell lines following exposure to Concanavalin A (Con A). In vivo, we examined their expression in archival paraffin embedded xenografts derived from a range of HBC cell lines of varied invasive and metastatic potential. Mouse xenografts are heterogenous, containing neoplastic human parenchyma with mouse stroma and vasculature and provide a reproducible in vivo model system correlated to the human disease state. Results In vitro, exposure to Con A increased MT1-MMP gene expression in MDA-MB-231 cells and decreased MT1-MMP gene expression in MCF-7 cells. MMP-1 and MMP-3 gene expression remained unchanged in both cell lines. In vivo, stromal cells recruited into each xenograft demonstrated differences in localised levels of MMP gene expression. Specifically, MDA-MB-231, MDA-MB-435 and Hs578T HBC cell lines are able to influence MMP gene expression in the surrounding stroma. Conclusion We have demonstrated the applicability and sensitivity of IS-RT-PCR for the examination of MMP gene expression both in vitro and in vivo. Induction of MMP gene expression in both the epithelial tumour cells and surrounding stromal cells is associated with increased metastatic potential. Our data demonstrate the contribution of the stroma to epithelial MMP gene expression, and highlight the complexity of the role of MMPs in the stromal-epithelial interactions within breast carcinoma.
Resumo:
In our laboratory, we have developed methods in real-time detection and quantitative-polymerase chain reaction (Q-PCR) to analyse the relative levels of gene expression in post mortem brain tissues. We have then applied this method to examine differences in gene activity between normal white matter (NWM) and plaque tissue from multiple sclerosis (MS) patients. Genes were selected based on their association with pathology and through identification by previously conducted global gene expression analysis. Plaque tissue was obtained from secondary progressive (SP) patients displaying chronic active, as well as acute pathologies; while NWM from the same location was obtained from age- and sex-matched controls (normal patients). In this study, we used both SYBR Green I supplementation and commercially available mixes to assess both comparative and absolute levels of gene activity. The results of both methods compared favourably for four of the five genes examined (P < 0.05, Pearsons), while differences in gene expression between chronic active and acute pathologies were also identified. For example, a >50-fold increase in osteopontin (Spp1) and inositol 1-4-5 phosphate 3 kinase B (Itpkb) levels in acute plaques contrasted with the 5-fold or less increase in chronic active plaques (P < 0.05, unpaired t test). By contrast, there was no significant difference in the levels of the MS marker and calcium-dependent protease (Calpain, Capns1) in MS plaque tissue. In summary, Q-PCR analysis using SYBR Green I has allowed us to economically obtain what may be clinically significant information from small amounts of the CNS, providing an opportunity for further clinical investigations.
Resumo:
In our laboratory we have developed a quantitative-polymerase chain reaction (Q-PCR) strategy to examine the differential expression of adenosine receptor (ADOR), A(1), A(2A), A(2B) and A(3), and estrogen receptors (ER) alpha and beta. Brain and uterine mRNA were first used to optimise specific amplification conditions prior to SYBR Green I real time analysis of receptor subtype expression. SYBR Green I provided a convenient and sensitive means of examining specific PCR amplification product in real time, and allowed the generation of standard curves from which relative receptor abundance could be determined. Real time Q-PCR analysis was then performed, to examine changes in receptor expression levels in brains of adult female Wistar rats 3-month post ovariectomy. Comparison with sham-operated age-matched control rats demonstrated both comparative and absolute-copy number changes in receptor levels. Evaluation of both analytical methods investigated 18S rRNA as an internal reference for comparative gene expression analysis in the brain. The results of this study revealed preferential repression of ADORA(2A) (>4-fold down) and consistent (>2-fold) down-regulation of ADORA(1), ADORA(3), and ER-beta, following ovariectomy. No change was found in ADORA(2B) or ER-alpha. Analysis of absolute copy number in this study revealed a correlation between receptor expression in response to ovariectomy, and relative receptor subtype abundance in the brain.