498 resultados para Platinum-based catalyst
Resumo:
Epithelial mesenchymal transition (EMT) and cancer stem cells (CSC) have been associated with resistance to chemotherapy. Eighty percent of ovarian cancer patients initially respond to platinum-based combination therapy but most return with recurrence and ultimate demise. To better understand such chemoresistance we have assessed the potential role of EMT in tumor cells collected from advanced-stage ovarian cancer patients and the ovarian cancer cell line OVCA 433 in response to cisplatin in vitro. We demonstrate that cisplatin-induced transition from epithelial to mesenchymal morphology in residual cancer cells correlated with reduced E-cadherin, and increased N-cadherin and vimentin expression. The mRNA expression of Snail, Slug, Twist, and MMP-2 were significantly enhanced in response to cisplatin and correlated with increased migration. This coincided with increased cell surface expression of CSC-like markers such as CD44, α2 integrin subunit, CD117, CD133, EpCAM, and the expression of stem cell factors Nanog and Oct-4. EMT and CSC-like changes in response to cisplatin correlated with enhanced activation of extracellular signal-regulated kinase (ERK)1/2. The selective MEK inhibitor U0126 inhibited ERK2 activation and partially suppressed cisplatin-induced EMT and CSC markers. In vivo xenotransplantation of cisplatin-treated OVCA 433 cells in zebrafish embryos demonstrated significantly enhanced migration of cells compared to control untreated cells. U0126 inhibited cisplatin-induced migration of cells in vivo, suggesting that ERK2 signaling is critical to cisplatin-induced EMT and CSC phenotypes, and that targeting ERK2 in the presence of cisplatin may reduce the burden of residual tumor, the ultimate cause of recurrence in ovarian cancer patients.
Resumo:
Background Current treatment of ovarian cancer patients with chemotherapy leaves behind a residual tumor which results in recurrent ovarian cancer within a short time frame. We have previously demonstrated that a single short-term treatment of ovarian cancer cells with chemotherapy in vitro resulted in a cancer stem cell (CSC)-like enriched residual population which generated significantly greater tumor burden compared to the tumor burden generated by control untreated cells. In this report we looked at the mechanisms of the enrichment of CSC-like residual cells in response to paclitaxel treatment. Methods The mechanism of survival of paclitaxel-treated residual cells at a growth inhibitory concentration of 50% (GI50) was determined on isolated tumor cells from the ascites of recurrent ovarian cancer patients and HEY ovarian cancer cell line by in vitro assays and in a mouse xenograft model. Results Treatment of isolated tumor cells from the ascites of ovarian cancer patients and HEY ovarian cancer cell line with paclitaxel resulted in a CSC-like residual population which coincided with the activation of Janus activated kinase 2 (JAK2) and signal transducer and activation of transcription 3 (STAT3) pathway in paclitaxel surviving cells. Both paclitaxel-induced JAK2/STAT3 activation and CSC-like characteristics were inhibited by a low dose JAK2-specific small molecule inhibitor CYT387 (1 μM) in vitro. Subsequent, in vivo transplantation of paclitaxel and CYT387-treated HEY cells in mice resulted in a significantly reduced tumor burden compared to that seen with paclitaxel only-treated transplanted cells. In vitro analysis of tumor xenografts at protein and mRNA levels demonstrated a loss of CSC-like markers and CA125 expression in paclitaxel and CYT387-treated cell-derived xenografts, compared to paclitaxel only-treated cell-derived xenografts. These results were consistent with significantly reduced activation of JAK2 and STAT3 in paclitaxel and CYT387-treated cell-derived xenografts compared to paclitaxel only-treated cell derived xenografts. Conclusions This proof of principle study demonstrates that inhibition of the JAK2/STAT3 pathway by the addition of CYT387 suppresses the ‘stemness’ profile in chemotherapy-treated residual cells in vitro, which is replicated in vivo, leading to a reduced tumor burden. These findings have important implications for ovarian cancer patients who are treated with taxane and/or platinum-based therapies. Keywords: Ovarian carcinoma, Cancer stem cell, Metastasis, Ascites, Chemoresistance, Recurrence, JAK2/STAT3 pathway
Resumo:
The self-organized growth of uniform carbon nanocone arrays using low-temperature non-equilibrium Ar + H 2 + CH 4 plasma-enhanced chemical vapor deposition (PECVD) is studied. The experiment shows that size-, shape-, and position-uniform carbon nanocone arrays can develop even from non-uniformly fragmented discontinuous nickel catalyst films. A three-stage scenario is proposed where the primary nanocones grow on large catalyst particles during the first stage, and the secondary nanocones are formed between the primary ones at the second stage. Finally, plasma-related effects lead to preferential growth of the secondary nanocones and eventually a uniform nanopattern is formed. This does not happen in a CVD process with the same gas feedstock and surface temperature. The proposed three-stage growth scenario is supported by the numerical experiment which generates nanocone arrays very similar to the experimentally synthesized nanopatterns. The self-organization process is explained in terms of re-distribution of surface and volumetric fluxes of plasma-generated species in a developing nanocone array. Our results suggest that plasma-related self-organization effects can significantly reduce the non-uniformity of carbon nanostructure arrays which commonly arises from imperfections in fragmented Ni-based catalyst films.
Resumo:
High-density inductively coupled plasma (ICP)-assisted self-assembly of the ordered arrays of various carbon nanostructures (NS) for the electron field emission applications is reported. Carbon-based nano-particles, nanotips, and pyramid-like structures, with the controllable shape, ordering, and areal density are grown under remarkably low process temperatures (260-350 °C) and pressures (below 0.1 Torr), on the same Ni-based catalyst layers, in a DC bias-controlled floating temperature regime. A high degree of positional and directional ordering, elevated sp2 content, and a well-structured graphitic morphology are achieved without the use of pre-patterned or externally heated substrates.
Resumo:
Self-assembly of carbon nanotip (CNTP) structures on Ni-based catalyst in chemically active inductively coupled plasmas of CH 4 + H 2 + Ar gas mixtures is reported. By varying the process conditions, it appears possible to control the shape, size, and density of CNTPs, content of the nanocrystalline phase in the films, as well as to achieve excellent crystallinity, graphitization, uniformity and vertical alignment of the resulting nanostructures at substrate temperatures 300-500°C and low gas pressures (below 13.2 Pa). This study provides a simple and efficient plasma-enhanced chemical vapor deposition (PECVD) technique for the fabrication of vertically aligned CNTP arrays for electron field emitters.
Resumo:
Nano Zero valent iron (Fe0) were reported as an effective material for azo dye removal, however, similar to other nano-materials, ultra-fine powder has a strong tendency to agglomerate into larger particles, resulting in an adverse effect on both effective surface area and catalyst performance. Here we report nano sized Fe0 particles dispersed onto the surface of natural bentonites. X-ray diffraction was used to study the sample phases. Scanning electron microscopy and transmission electron microscopy were applied to study the morphology and morphological changes. Spherical individual Fe0 particles were observed after dispersion onto bentonites, and these samples were used for orange II (OII) decolourization with wide working pH range. Higher reactivity is attributed to good dispersion of Fe0 particles on clay minerals’ surface. This study is significant for providing novel modified clay based catalyst materials for the decolourization of azo dye contaminants from wastewater.
Resumo:
Cisplatin (cis-diamminedichloroplatinum (II)), is a platinum based chemotherapeutic employed in the clinic to treat patients with lung, ovarian, colorectal or head and neck cancers. Cisplatin acts to induce tumor cell death via multiple mechanisms. The best characterized mode of action is through irreversible DNA cross-links which activate DNA damage signals leading to cell death via the intrinsic mitochondrial apoptosis pathway. However, the primary issue with cisplatin is that while patients initially respond favorably, sustained cisplatin therapy often yields chemoresistance resulting in therapeutic failure. In this chapter, we review the DNA damage and repair pathways that contribute to cisplatin resistance. We also examine the cellular implications of cisplatin resistance that may lead to selection of subpopulations of cells within a tumor. In better understanding the mechanisms conferring cisplatin resistance, novel targets may be identified to restore drug sensitivity.
Resumo:
Introduction Metastatic spread to the brain is common in patients with non–small cell lung cancer (NSCLC), but these patients are generally excluded from prospective clinical trials. The studies, phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations (LUX-Lung 3) and a randomized, open-label, phase III study of BIBW 2992 versus chemotherapy as first-line treatment for patients with stage IIIB or IV adenocarcinoma of the lung harbouring an EGFR activating mutation (LUX-Lung 6) investigated first-line afatinib versus platinum-based chemotherapy in epidermal growth factor receptor gene (EGFR) mutation-positive patients with NSCLC and included patients with brain metastases; prespecified subgroup analyses are assessed in this article. Methods For both LUX-Lung 3 and LUX-Lung 6, prespecified subgroup analyses of progression-free survival (PFS), overall survival, and objective response rate were undertaken in patients with asymptomatic brain metastases at baseline (n = 35 and n = 46, respectively). Post hoc analyses of clinical outcomes was undertaken in the combined data set (n = 81). Results In both studies, there was a trend toward improved PFS with afatinib versus chemotherapy in patients with brain metastases (LUX-Lung 3: 11.1 versus 5.4 months, hazard ratio [HR] = 0.54, p = 0.1378; LUX-Lung 6: 8.2 versus 4.7 months, HR = 0.47, p = 0.1060). The magnitude of PFS improvement with afatinib was similar to that observed in patients without brain metastases. In combined analysis, PFS was significantly improved with afatinib versus with chemotherapy in patients with brain metastases (8.2 versus 5.4 months; HR, 0.50; p = 0.0297). Afatinib significantly improved the objective response rate versus chemotherapy in patients with brain metastases. Safety findings were consistent with previous reports. Conclusions These findings lend support to the clinical activity of afatinib in EGFR mutation–positive patients with NSCLC and asymptomatic brain metastases.
Resumo:
In the absence of specific treatable mutations, platinum-based chemotherapy remains the gold standard of treatment for lung cancer patients. However, 5-year survival rates remain poor due to the development of resistance and eventual relapse. Resistance to conventional cytotoxic therapies presents a significant clinical challenge in the treatment of this disease. The cancer stem cell (CSC) hypothesis suggests that tumors are arranged in a hierarchical structure, with the presence of a small subset of stem-like cells that are responsible for tumor initiation and growth. This CSC population has a number of key properties such as the ability to asymmetrically divide, differentiate and self-renew, in addition to having increased intrinsic resistance to therapy. While cytotoxic chemotherapy kills the bulk of tumor cells, CSCs are spared and have the ability to recapitulate the heterogenic tumor mass. The identification of lung CSCs and their role in tumor biology and treatment resistance may lead to innovative targeted therapies that may ultimately improve clinical outcomes in lung cancer patients. This review will focus on lung CSC markers, their role in resistance and their relevance as targets for future therapies.
Resumo:
Poly(L-lactide-co-succinic anhydride) networks were synthesised via the carbodiimide-mediated coupling of poly(L-lactide) (PLLA) star polymers. When 4-(dimethylamino)pyridine (DMAP) alone was used as the catalyst gelation did not occur. However, when 4-(dimethylamino)pyridinium p-toluenesulfonate (DPTS), the salt of DMAP and p-toluenesulfonic acid (PTSA), was the catalyst, the networks obtained had gel fractions comparable to those which were reported for networks synthesised by conventional methods. Greater gel fractions and conversion of the prepolymer terminal hydroxyl groups were observed when the hydroxyl-terminated star prepolymers reacted with succinic anhydride in a one-pot procedure than when the hydroxyl-terminated star prepolymers reacted with presynthesised succinic-terminated star prepolymers. The thermal properties of the networks, glass transition temperature (Tg), melting temperature (Tm) and crystallinity (Xc) were all strongly influenced by the average molecular weights between the crosslinks ((M_c). The network with the smallest (M_c )(1400 g/mol) was amorphous and had a Tg of 59 °C while the network with the largest (M_c ) (7800 g/mol) was 15 % crystalline and had a Tg of 56 °C.
Resumo:
Photo-curable biodegradable macromers were prepared by ring opening polymerization of D,L-lactide (DLLA), (similar to)-caprolactone (CL) and 1,3-trimethylene carbonate (TMC) in the presence of glycerol or sorbitol as initiator and stannous octoate as catalyst, and subsequent methacrylation of the terminal hydroxyl groups. These methacrylated macromers, ranging in molecular weight from approximately 700 to 6000 g/mol, were cross-linked using ultraviolet (UV) light to form biodegradable networks. Homogeneous networks with high gel contents were prepared. One of the resins based on PTMC was used to prepare three-dimensional structures by stereo-lithography using a commercially available apparatus.
Resumo:
Photo-curable biodegradable macromers were prepared by ring opening polymerization of D,L-lactide (DLLA), ε-caprolactone (CL) and 1,3-trimethylene carbonate (TMC) in the presence of glycerol or sorbitol as initiator and stannous octoate as catalyst, and subsequent methacrylation of the terminal hydroxyl groups. These methacrylated macromers, ranging in molecular weight from approximately 700 to 6000 g/mol, were cross-linked using ultraviolet (UV) light to form biodegradable networks. Homogeneous networks with high gel contents were prepared. One of the resins based on PTMC was used to prepare three-dimensional structures by stereo-lithography using a commercially available apparatus.
Resumo:
Pt/graphene nanosheet/SiC based devices are fabricated and characterized and their performances toward hydrogen gas are investigated. The graphene nanosheets are synthesized via the reduction of spray-coated graphite oxide deposited onto SiC substrates. Raman and X-ray photoelectron spectroscopies indicate incomplete reduction of the graphite oxide, resulting in partially oxidized graphene nanosheet layers of less than 10 nm thickness. The effects of interfaces on the nonlinear behavior of the Pt/graphene and graphene/SiC junctions are investigated. Current-voltage measurements of the sensors toward 1% hydrogen in synthetic air gas mixture at various temperatures ranging up to 100. ° C are performed. From the dynamic response, a voltage shift of ∼100 mV is recorded for 1% hydrogen at a constant current bias of 1 mA at 100. °C. © 2010 American Chemical Society.
Resumo:
Materials with one-dimensional (1D) nanostructure are important for catalysis. They are the preferred building blocks for catalytic nanoarchitecture, and can be used to fabricate designer catalysts. In this thesis, one such material, alumina nanofibre, was used as a precursor to prepare a range of nanocomposite catalysts. Utilising the specific properties of alumina nanofibres, a novel approach was developed to prepare macro-mesoporous nanocomposites, which consist of a stacked, fibrous nanocomposite with a core-shell structure. Two kinds of fibrous ZrO2/Al2O3 and TiO2/Al2O3 nanocomposites were successfully synthesised using boehmite nanofibers as a hard temperate and followed by a simple calcination. The alumina nanofibres provide the resultant nanocomposites with good thermal stability and mechanical stability. A series of one-dimensional (1D) zirconia/alumina nanocomposites were prepared by the deposition of zirconium species onto the 3D framework of boehmite nanofibres formed by dispersing boehmite nanofibres into a butanol solution, followed by calcination at 773 K. The materials were characterised by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), N2 adsorption/desorption, Infrared Emission Spectroscopy (IES), and Fourier Transform Infrared spectroscopy (FT-IR). The results demonstrated that when the molar percentage, X, X=100*Zr/(Al+Zr), was > 30%, extremely long ZrO2/Al2O3 composite nanorods with evenly distributed ZrO2 nanocrystals formed on their surface. The stacking of such nanorods gave rise to a new kind of macroporous material without the use of any organic space filler\template or other specific drying techniques. The mechanism for the formation of these long ZrO2/Al2O3 composite nanorods is proposed in this work. A series of solid-superacid catalysts were synthesised from fibrous ZrO2/Al2O3 core and shell nanocomposites. In this series, the zirconium molar percentage was varied from 2 % to 50 %. The ZrO2/Al2O3 nanocomposites and their solid superacid counterparts were characterised by a variety of techniques including 27Al MAS-NMR, SEM, TEM, XPS, Nitrogen adsorption and Infrared Emission Spectroscopy. NMR results show that the interaction between zirconia species and alumina strongly correlates with pentacoordinated aluminium sites. This can also be detected by the change in binding energy of the 3d electrons of the zirconium. The acidity of the obtained superacids was tested by using them as catalysts for the benzolyation of toluene. It was found that a sample with a 50 % zirconium molar percentage possessed the highest surface acidity equalling that of pristine sulfated zirconia despite the reduced mass of zirconia. Preparation of hierarchically macro-mesoporous catalyst by loading nanocrystallites on the framework of alumina bundles can provide an alternative system to design advanced nanocomposite catalyst with enhanced performance. A series of macro-mesoporous TiO2/Al2O3 nanocomposites with different morphologies were synthesised. The materials were calcined at 723 K and were characterised by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), N2 adsorption/desorption, Infrared Emission Spectroscopy (IES), and UV-visible spectroscopy (UV-visible). A modified approach was proposed for the synthesis of 1D (fibrous) nanocomposite with higher Ti/Al molar ratio (2:1) at lower temperature (<100oC), which makes it possible to synthesize such materials on industrial scale. The performances of a series of resultant TiO2/Al2O3 nanocomposites with different morphologies were evaluated as a photocatalyst for the phenol degradation under UV irradiation. The photocatalyst (Ti/Al =2) with fibrous morphology exhibits higher activity than that of the photocatalyst with microspherical morphology which indeed has the highest Ti to Al molar ratio (Ti/Al =3) in the series of as-synthesised hierarchical TiO2/Al2O3 nanocomposites. Furthermore, the photocatalytic performances, for the fibrous nanocomposites with Ti/Al=2, were optimized by calcination at elevated temperatures. The nanocomposite prepared by calcination at 750oC exhibits the highest catalytic activity, and its performance per TiO2 unit is very close to that of the gold standard, Degussa P 25. This work also emphasizes two advantages of the nanocomposites with fibrous morphology: (1) the resistance to sintering, and (2) good catalyst recovery.
Resumo:
Problem-based learning (PBL) has been used successfully in disciplines such as medicine, nursing, law and engineering. However a review of the literature shows that there has been little use of this approach to learning in accounting. This paper extends the research in accounting education by reporting the findings of a case study of the development and implementation of PBL at the Queensland University of Technology (QUT) in a new Accountancy Capstone unit that began in 2006. The fundamentals of the PBL approach were adhered to. However, one of the essential elements of the approach adopted was to highlight the importance of questioning as a means of gathering the necessary information upon which decisions are made. This approach can be contrasted with the typical ‘give all the facts’ case studies that are commonly used. Another feature was that students worked together in the same group for an entire semester (similar to how teams in the workplace operate) so there was an intended focus on teamwork in solving unstructured, real-world accounting problems presented to students. Based on quantitative and qualitative data collected from student questionnaires over seven semesters, it was found that students perceived PBL to be effective, especially in terms of developing the skills of questioning, teamwork, and problem solving. The effectiveness of questioning is very important as this is a skill that is rarely the focus of development in accounting education. The successful implementation of PBL in accounting through ‘learning by doing’ could be the catalyst for change to bring about better learning outcomes for accounting graduates.