22 resultados para Planktonic and sessile bacteria


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The idea that microbes induce disease has steered medical research toward the discovery of antibacterial products for the prevention and treatment of microbial infections. The twentieth century saw increasing dependency on antimicrobials as mainline therapy accentuating the notion that bacterial interactions with humans were to be avoided or desirably controlled. The last two decades, though, have seen a refocusing of thinking and research effort directed towards elucidating the critical inter-relationships between the gut microbiome and its host that control health/wellness or disease. This research has redefined the interactions between gut microbes and vertebrates, now recognizing that the microbial active cohort and its mammalian host have shared co-evolutionary metabolic interactions that span millennia. Microbial interactions in the gastrointestinal tract provide the necessary cues for the development of regulated pro- and anti-inflammatory signals that promotes immunological tolerance, metabolic regulation and other factors which may then control local and extra-intestinal inflammation. Pharmacobiotics, using nutritional and functional food additives to regulate the gut microbiome, will be an exciting growth area of therapeutics, developing alongside an increased scientific understanding of gut-microbiome symbiosis in health and disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A series of flooding events occurred in Queensland, Australia during December 2010 and January 2011. The state’s capital city of Brisbane experienced major flooding in January 2011, when the Brisbane River broke its bank and inundated low lying areas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lignocellulosic materials, such as sugar cane bagasse, a waste product of the sugarcane processing industry, agricultural residues and herbaceous crops, may serve as an abundant and comparatively cheap feedstock for largescale industrial fermentation, resulting in the production of marketable end-products. However, the complex structure of lignocellulosic materials, the presence of various hexose and pentose sugars in the hemicellulose component, and the presence of various compounds that inhibit the organisms selected for the fermentation process, all constitute barriers that add to the production costs and make full scale industrial production economically less feasible. The work presented in this thesis was conducted in order to screen microorganisms for ability to utilize pentose sugars derived from the sugar mill industrial waste. A large number of individual bacterial strains were investigated from hemi-cellulose rich material collected at the Proserpine and Maryborough sugar mills, notably soil samples from the mill sites. The research conducted to isolation of six pentose-capable Gram-positive organisms from the actinomycetes group by using pentose as a sole carbon source in the cultivation process. The isolates were identified as Corynebacterium glutamicum, Actinomyces odontolyticus, Nocardia elegans, and Propionibacterium freudenreichii all of which were isolated from the hemicellulose-enriched soil. Pentose degrading microbes are very rare in the environment, so this was a significant discovery. Previous research indicated that microbes could degrade pentose after genetic modification but the microbes discovered in this research were able to naturally utilize pentose. Six isolates, identified as four different genera, were investigated for their ability to utilize single sugars as substrates (glucose, xylose, arabinose or ribose), and also dual sugars as substrates (a hexose plus a pentose). The results demonstrated that C. glutamicum, A. odontolyticus, N. elegans, and P. freudenreichii were pentose-capable (able to grow using xylose or other pentose sugar), and also showed diauxie growth characteristics during the dual-sugar (glucose, in combination with xylose, arabinose or ribose) carbon source tests. In addition, it was shown that the isolates displayed very small differences in growth rates when grown on dual sugars as compared to single sugars, whether pentose or hexose in nature. The anabolic characteristics of C. glutamicum, A. odontolyticus, N. elegans and P. freudenreichii were subsequently investigated by qualitative analysis of their end-products, using high performance liquid chromatography (HPLC). All of the organisms produced arginine and cysteine after utilization of the pentose substrates alone. In addition, P. freudenreichii produced alanine and glycine. The end-product profile arising from culture with dual carbon sources was also tested. Interestingly, this time the product was different. All of them produced the amino acid glycine, when grown on a combination substrate-mix of glucose with xylose, and also glucose with arabinose. Only N. elegans was able to break down ribose, either singly or in combination with glucose, and the end-product of metabolism of the glucose plus ribose substrate combination was glutamic acid. The ecological analysis of microbial abundance in sugar mill waste was performed using denaturing gradient gel electrophoresis (DGGE) and also the metagenomic microarray PhyloChip method. Eleven solid samples and seven liquid samples were investigated. A very complex bacterial ecosystem was demonstrated in the seven liquid samples after testing with the PhyloChip method. It was also shown that bagasse leachate was the most different, compared to all of the other samples, by virtue of its richness in variety of taxa and the complexity of its bacterial community. The bacterial community in solid samples from Proserpine, Mackay and Maryborough sugar mills showed huge diversity. The information found from 16S rDNA sequencing results was that the bacterial genera Brevibacillus, Rhodospirillaceae, Bacillus, Vibrio and Pseudomonas were present in greatest abundance. In addition, Corynebacterium was also found in the soil samples. The metagenomic studies of the sugar mill samples demonstrate two important outcomes: firstly that the bagasse leachate, as potentially the most pentose-rich sample tested, had the most complex and diverse bacterial community; and secondly that the pentose-capable isolates that were initially discovered at the beginning of this study, were not amongst the most abundant taxonomic groups discovered in the sugar mill samples, and in fact were, as suspected, very rare. As a bioprospecting exercise, therefore, the study has discovered organisms that are naturally present, but in very small numbers, in the appropriate natural environment. This has implications for the industrial application of E-PUB, in that a seeding process using a starter culture will be necessary for industrial purposes, rather than simply assuming that natural fermentation might occur.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Opportunistic bacterial infections of the nasal cavity could potentially lead to infection of the brain if the olfactory or trigeminal nerves are colonised. The olfactory nerve may be a more susceptible route because primary olfactory neurons are in direct contact with the external environment. Peripheral glia are known to be able to phagocytose some species of bacteria and may therefore provide a defence mechanism against bacterial infection. As the nasal cavity is frequently exposed to bacterial infections, we hypothesised that the olfactory and trigeminal nerves within the nasal cavity could be subjected to bacterial colonisation and that the olfactory ensheathing cells and Schwann cells may be involved in responding to the bacterial invasion. We have examined the ability of mouse OECs and Schwann cells from the trigeminal nerve and dorsal root ganglia to phagocytose Escherichia coli and Burkholderia thailandensis in vitro. We found that all three sources of glia were equally able to phagocytose E. coli with 75-85% of glia having phagocytosed bacteria within 24h. We also show that human OECs phagocytosed E. coli. In contrast, the mouse OECs and Schwann cells had little capacity to phagocytose B. thailandensis. Thus subtypes of peripheral glia have similar capacities for phagocytosis of bacteria but show selective capacity for the two different species of bacteria that were examined. These results have implications for the understanding of the mechanisms of bacterial infections as well as for the use of glia for neural repair therapies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many fungi, lichens, and bacteria produce xanthones (derivatives of 9H-xanthen-9-one, “xanthone” from the Greek “xanthos”, for “yellow”) as secondary metabolites. Xanthones are typically polysubstituted and occur as either fully aromatized, dihydro-, tetrahydro-, or, more rarely, hexahydro-derivatives. This family of compounds appeals to medicinal chemists because of their pronounced biological activity within a notably broad spectrum of disease states, a result of their interaction with a correspondingly diverse range of target biomolecules. This has led to the description of xanthones as “privileged structures”.(1) Historically, the total synthesis of the natural products has mostly been limited to fully aromatized targets. Syntheses of the more challenging partially saturated xanthones have less frequently been reported, although the development in recent times of novel and reliable methods for the construction of the (polysubstituted) unsaturated xanthone core holds promise for future endeavors. In particular, the fascinating structural and biological properties of xanthone dimers and heterodimers may excite the synthetic or natural product chemist.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Most studies exploring the role of upper airway viruses and bacteria in paediatric acute respiratory infections (ARI) focus on specific clinicaldiagnoses and/or do not account for virus–bacteria interactions. We aimed to describe the frequency and predictors of virus and bacteria codetection in children with ARI and cough, irrespective of clinical diagnosis. Bilateral nasal swabs, demographic, clinical and risk factor data were collected at enrollment in children aged <15 years presenting to an emergency department with an ARI and where cough was a symptom. Swabs were tested by polymerase chain reaction for 17 respiratory viruses and seven respiratory bacteria. Logistic regression was used to investigate associations between child characteristics and codetection of the organisms of interest. Between December 2011 and August 2014, swabs were collected from 817 (93.3%) of 876 enrolled children, median age 27.7 months (interquartile range13.9–60.3 months). Overall, 740 (90.6%) of 817 specimens were positive for any organism. Both viruses and bacteria were detected in 423 specimens (51.8%). Factors associated with codetection were age (adjusted odds ratio (aOR) for age <12 months = 4.9, 95% confidence interval (CI) 3.0, 7.9; age 12 to <24 months = 6.0, 95% CI 3.7, 9.8; age 24 to <60 months = 2.4, 95% CI 1.5, 3.9), male gender (aOR 1.46; 95% CI 1.1, 2.0), child care attendance (aOR 2.0; 95% CI 1.4, 2.8) and winter enrollment (aOR 2.0; 95% CI 1.3, 3.0). Haemophilus influenzae dominated the virus–bacteria pairs. Virus–H. influenzae interactions in ARI should be investigated further, especially as the contribution of nontypeable H. influenzae to acute and chronic respiratory diseases is being increasingly recognized.