17 resultados para Philologie slave


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Jurassic Muskox and Jericho kimberlites (Northern Slave Province, Nunavut, Canada) contain a variety of facies exhibiting different geometries, contact relationships, internal organisation, country rock abundance and olivine shapes, although many have similar matrix/groundmass mineralogies and textures. Five facies are examined that either have characteristics consistent with coherent rocks in general (i.e. intrusive and extrusive non-fragmental rocks) or are mineralogically and texturally similar to kimberlite described as coherent (or apparent coherent). Three facies are interpreted as coherent on the basis of: (1) geological setting, (2) apparent-porphyritic texture, (3) sharp contacts with fragmental kimberlite, (4) relative abundance of elongate and unbroken olivine crystals and (5) paucity of country rock xenoliths, while the remaining two facies are interpreted as fragmental on the basis of: (1) the gradational contacts with demonstrably fragmental kimberlite, (2) relative abundance and range of sizes of country rock lithic clasts and (3) numerous broken olivine crystals. Comparisons are made with coherent and apparent-coherent kimberlite from the literature. Our three coherent facies are similar to literature reported coherent kimberlite dykes hosted in country rock (CKd) in terms of internal organisation, low abundance of country rock xenoliths, and apparent-porphyritic texture. Conversely, our two fragmental facies share attributes with previously described pipe-filling coherent and apparent-coherent kimberlite (CKpf) in terms of geometry, internal organisation and abundance of country rock xenoliths. We conclude that CKd and most CKpf, although similar in matrix/groundmass mineralogy and texture, can be distinguished on the basis of internal organisation, country rock lithic clast abundance, texture (e.g. apparent-porphyritic texture) and possibly olivine crystal shapes and suggest that fragmental kimberlite is more common than reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The matrix of volcaniclastic kimberlite (VK) from the Muskox pipe (Northern Slave Province, Nunavut, Canada) is interpreted to represent an overprint of an original clastic matrix. Muskox VK is subdivided into three different matrix mineral assemblages that reflect differences in the proportions of original primary matrix constituents, temperature of formation and nature of the altering fluids. Using whole rock X-ray fluorescence (XRF), whole rock X-ray diffraction (XRD), microprobe analyses, back-scatter electron (BSE) imaging, petrography and core logging, we find that most matrix minerals (serpentine, phlogopite, chlorite, saponite, monticellite, Fe-Ti oxides and calcite) lack either primary igneous or primary clastic textures. The mineralogy and textures are most consistent with formation through alteration overprinting of an original clastic matrix that form by retrograde reactions as the deposit cools, or, in the case of calcite, by precipitation from Ca-bearing fluids into a secondary porosity. The first mineral assemblage consists largely of serpentine, phlogopite, calcite, Fe-Ti oxides and monticellite and occurs in VK with relatively fresh framework clasts. Alteration reactions, driven by deuteric fluids derived from the juvenile constituents, promote the crystallisation of minerals that indicate relatively high temperatures of formation (> 400 °C). Lower-temperature minerals are not present because permeability was occluded before the deposit cooled to low temperatures, thus shielding the facies from further interaction with fluids. The other two matrix mineral assemblages consist largely of serpentine, phlogopite, calcite, +/- diopside, and +/- chlorite. They form in VK that contains more country rock, which may have caused the deposit to be cooler upon emplacement. Most framework components are completely altered, suggesting that larger volumes of fluids drove the alteration reactions. These fluids were likely of meteoric provenance and became heated by the volcaniclastic debris when they percolated into the VK infill. Most alteration reactions ceased at temperatures > 200 °C, as indicated by the absence or paucity of lower-temperature phases in most samples, such as saponite. Recognition that Muskox VK contains an original clastic matrix is a necessary first step for evaluating the textural configuration, which is important for reconstructing the physical processes responsible for the formation of the deposit.