721 resultados para Passive restraint systems.
Resumo:
Large number of rooftop Photovoltaics (PVs) have turned traditional passive networks into active networks with intermittent and bidirectional power flow. A community based distribution network grid reinforcement process is proposed to address technical challenges associated with large integration of rooftop PVs. Probabilistic estimation of intermittent PV generation is considered. Depending on the network parameters such as the R/X ratio of distribution feeder, either reactive control from PVs or coordinated control of PVs and Battery Energy Storage (BES) has been proposed. Determination of BES capacity is one of the significant outcomes from the proposed method and several factors such as variation in PV installed capacity as well as participation from community members are analyzed. The proposed approach is convenient for the community members providing them flexibility of managing their integrated PV and BES systems
Resumo:
This paper proposes new techniques for aircraft shape estimation, passive ranging, and shape-adaptive hidden Markov model filtering which are suitable for a monocular vision-based non-cooperative collision avoidance system. Vision-based passive ranging is an important missing technology that could play a significant role in resolving the sense-and-avoid problem in un-manned aerial vehicles (UAVs); a barrier hindering the wider adoption of UAVs for civilian applications. The feasibility of the pro- posed shape estimation, passive ranging and shape-adaptive filtering techniques is evaluated on flight test data.
Resumo:
Intelligent Transport Systems (ITS) have the potential to substantially reduce the number of crashes caused by human errors at railway levels crossings. Such systems, however, will only exert an influence on driving behaviour if they are accepted by the driver. This study aimed at assessing driver acceptance of different ITS interventions designed to enhance driver behaviour at railway crossings. Fifty eight participants, divided into three groups, took part in a driving simulator study in which three ITS devices were tested: an in-vehicle visual ITS, an in-vehicle audio ITS, and an on-road valet system. Driver acceptance of each ITS intervention was assessed in a questionnaire guided by the Technology Acceptance Model and the Theory of Planned Behaviour. Overall, results indicated that the strongest intentions to use the ITS devices belonged to participants exposed to the road-based valet system at passive crossings. The utility of both models in explaining drivers’ intention to use the systems is discussed, with results showing greater support for the Theory of Planned Behaviour. Directions for future studies, along with strategies that target attitudes and subjective norms to increase drivers’ behavioural intentions, are also discussed.
Resumo:
A planar polynomial differential system has a finite number of limit cycles. However, finding the upper bound of the number of limit cycles is an open problem for the general nonlinear dynamical systems. In this paper, we investigated a class of Liénard systems of the form x'=y, y'=f(x)+y g(x) with deg f=5 and deg g=4. We proved that the related elliptic integrals of the Liénard systems have at most three zeros including multiple zeros, which implies that the number of limit cycles bifurcated from the periodic orbits of the unperturbed system is less than or equal to 3.
Revolutionary Leadership, Education Systems and New Times: More of the Same or Time For Real Change?