60 resultados para Parecis basin
Resumo:
The business of helping children to grow up as ‘custodians’, or ‘future managers’ of the Murray-Darling Basin is not simple, and that single sources of information and ways of seeing the environment are not enough. Children (and adults) need to be able to relate individually, emotionally and aesthetically to their places if they are to learn to love them. However, they also need access to a variety of ways of thinking and seeing those same places if they are to be able to take action to sustain them – action that inevitably involves forms of communication with their fellow citizens. This chapter documents the writing and art program Special Forever, with its focus on communications, as an important intervention into promoting eco-social sustainability.
Resumo:
The legal arrangements for the management of the Murray-Darling Basin in Australia have changed significantly over the years. The Constitution of the Commonwealth has led to the legal arrangements for the management of the Murray-Darling Basin. The Water Act 2000 of Queensland aimed at advancing sustainable management and efficient use of water and other resources by establishing a system for the planning, allocation and use of water. The Water Management Act 2000 of New South Wales ensures the sustainable and integrated management of the water resources of the state benefiting the present and future generations. The Natural Resources Management Act 2004 of South Australia applies to water resources and to other natural resources. The Act aimed at assisting the achievement of ecologically sustainable development in the state.
Resumo:
A detailed 3D lithological model framework was developed using GOCAD software to understand interactions between alluvial, volcanic and GAB aquifers and the spatial and temporal distribution of groundwater recharge to the alluvium of the Lockyer Valley. Groundwater chemistry, isotope data (H20-δ2H and δ18O , 87Sr/86Sr, 3H and 14C) and groundwater level time-series data from approximately 550 observation wells were integrated into the catchment-wide 3D model to assess the recharge processes involved. This approach enabled the identification of zones where recharge to the alluvium primarily occurs from stream water during episodic flood events. Importantly, the study also demonstrates that in some sections of the alluvium recharge is also from storm rainfall and seepage discharge from the underlying GAB aquifers. These other sources of recharge are indicated by (a) the absence of a response of groundwater levels to flooding in some areas, (b) old radiocarbon ages, and (c) distinct bedrock water chemistry and δ2H and δ18O signatures in alluvial groundwater at these locations. Integration of isotopes, water chemistry and time-series displays of groundwater levels before and after the 2010/2011 flood into the 3D model suggest that the spatial variations in the alluvial groundwater response are mostly controlled by valley morphology and lithological (i.e. permeability) variations within the alluvium. Examination of the groundwater level variations in the 3D model also enabled quantification of the volumetric change of groundwater stored in the unconfined alluvial aquifer prior to and post-flood events.
Resumo:
1. The phylogeography of freshwater taxa is often integrally linked with landscape changes such as drainage re-alignments that may present the only avenue for historical dispersal for these taxa. Classical models of gene flow do not account for landscape changes and so are of little use in predicting phylogeography in geologically young freshwater landscapes. When the history of drainage formation is unknown, phylogeographical predictions can be based on current freshwater landscape structure, proposed historical drainage geomorphology, or from phylogeographical patterns of co-distributed taxa. 2. This study describes the population structure of a sedentary freshwater fish, the chevron snakehead (Channa striata), across two river drainages on the Indochinese Peninsula. The phylogeographical pattern recovered for C. striata was tested against seven hypotheses based on contemporary landscape structure, proposed history and phylogeographical patterns of codistributed taxa. 3. Consistent with the species ecology, analysis of mitochondrial and microsatellite loci revealed very high differentiation among all sampled sites. A strong signature of historical population subdivision was also revealed within the contemporary Mekong River Basin (MRB). Of the seven phylogeographical hypotheses tested, patterns of co-distributed taxa proved to be the most adequate for describing the phylogeography of C. striata. 4. Results shed new light on SE Asian drainage evolution, indicating that the Middle MRB probably evolved via amalgamation of at least three historically independent drainage sections and in particular that the Mekong River section centred around the northern Khorat Plateau in NE Thailand was probably isolated from the greater Mekong for an extensive period of evolutionary time. In contrast, C. striata populations in the Lower MRB do not show a phylogeographical signature of evolution in historically isolated drainage lines, suggesting drainage amalgamation has been less important for river landscape formation in this region.
Resumo:
The range of legal instruments informing how the Murray-Darling Basin (MDB)is managed is extensive. Some provide guidance; a number indicate strategies and policies; some assume the form of protectable rights and enforceable duties.What has emerged is a complicated and sophisticated web of interacting normative arrangements. These include: several international agreements including those concerning wetlands,biodiversity and climate change; the Constitution of the Commonwealth; the Water Act 2007 of the Commonwealth; the Murray-Darling Basin Agreement scheduled to the Act; State water entitlements stated in the Agreement; Commonwealth environmental water holdings under the Act; the Murray-Darling Basin Plan; water-resource plans under the Act or State or Territorial water legislation; State and Territorial water legislation; and water entitlements and water rights under State or Territorial water legislation.
Resumo:
The Sudbury Basin is a non-cylindrical fold basin occupying the central portion of the Sudbury Impact Structure. The impact structure lends itself excellently to explore the structural evolution of continental crust containing a circular region of long-term weakness. In a series of scaled analogue experiments various model crustal configurations were shortened horizontally at a constant rate. In mechanically weakened crust, model basins formed that mimic several first-order structural characteristics of the Sudbury Basin: (1) asymmetric, non-cylindrical folding of the Basin, (2) structures indicating concentric shortening around lateral basin termini and (3) the presence of a zone of strain concentration near the hinge zones of model basins. Geometrically and kinematically this zone corresponds to the South Range Shear Zone of the Sudbury Basin. According to our experiments, this shear zone is a direct mechanical consequence of basin formation, rather than the result of thrusting following folding. Overall, the models highlight the structurally anomalous character of the Sudbury Basin within the Paleoproterozoic Eastern Penokean Orogen. In particular, our models suggest that the Basin formed by pure shear thickening of crust, whereas transpressive deformation prevailed elsewhere in the orogen. The model basin is deformed by thickening and non-cylindrical synformal buckling, while conjugate transpressive shear zones propagated away from its lateral tips. This is consistent with pure shear deformation of a weak circular inclusion in a strong matrix. The models suggest that the Sudbury Basin formed as a consequence of long-term weakening of the upper crust by meteorite impact.
Resumo:
The Clarence-Moreton Basin (CMB) covers approximately 26000 km2 and is the only sub-basin of the Great Artesian Basin (GAB) in which there is flow to both the south-west and the east, although flow to the south-west is predominant. In many parts of the basin, including catchments of the Bremer, Logan and upper Condamine Rivers in southeast Queensland, the Walloon Coal Measures are under exploration for Coal Seam Gas (CSG). In order to assess spatial variations in groundwater flow and hydrochemistry at a basin-wide scale, a 3D hydrogeological model of the Queensland section of the CMB has been developed using GoCAD modelling software. Prior to any large-scale CSG extraction, it is essential to understand the existing hydrochemical character of the different aquifers and to establish any potential linkage. To effectively use the large amount of water chemistry data existing for assessment of hydrochemical evolution within the different lithostratigraphic units, multivariate statistical techniques were employed.