92 resultados para POINT KERNELS
Resumo:
Young children are most vulnerable to, and most at risk from, environmental and sustainability challenges. Early education investments aimed at addressing such issues, until recently however, have been neglected or under-rated. Fortunately, this is changing. A groundswell of practitioner interest in early childhood environmental education/ education for sustainability is emerging, in contrast to the ‘patches of green’ that have characterised previous decades. Indeed, an international coalition for early childhood education for sustainability (ECEfS) is beginning to develop, evidenced by The Gothenburg Recommendations on Education for Sustainable Development (2008) that identifies early childhood, within a framework of lifelong learning, as a ‘natural starting point’ for all ongoing education for sustainability. This document is important as it is the first international statement to explicitly identify ECEfS as contributing to education for sustainability. The next challenge for ECEfS is for practitioner mobilisation to be matched by research activity aimed at broadening and deepening practice-based responses. This is the next exciting frontier in the legitimisation of ECEfS.
Resumo:
This paper formulates a node-based smoothed conforming point interpolation method (NS-CPIM) for solid mechanics. In the proposed NS-CPIM, the higher order conforming PIM shape functions (CPIM) have been constructed to produce a continuous and piecewise quadratic displacement field over the whole problem domain, whereby the smoothed strain field was obtained through smoothing operation over each smoothing domain associated with domain nodes. The smoothed Galerkin weak form was then developed to create the discretized system equations. Numerical studies have demonstrated the following good properties: NS-CPIM (1) can pass both standard and quadratic patch test; (2) provides an upper bound of strain energy; (3) avoid the volumetric locking; (4) provides the higher accuracy than those in the node-based smoothed schemes of the original PIMs.
Resumo:
In this article, an enriched radial point interpolation method (e-RPIM) is developed for computational mechanics. The conventional radial basis function (RBF) interpolation is novelly augmented by the suitable basis functions to reflect the natural properties of deformation. The performance of the enriched meshless RBF shape functions is first investigated using the surface fitting. The surface fitting results have proven that, compared with the conventional RBF, the enriched RBF interpolation has a much better accuracy to fit a complex surface than the conventional RBF interpolation. It has proven that the enriched RBF shape function will not only possess all advantages of the conventional RBF interpolation, but also can accurately reflect the deformation properties of problems. The system of equations for two-dimensional solids is then derived based on the enriched RBF shape function and both of the meshless strong-form and weak-form. A numerical example of a bar is presented to study the effectiveness and efficiency of e-RPIM. As an important application, the newly developed e-RPIM, which is augmented by selected trigonometric basis functions, is applied to crack problems. It has been demonstrated that the present e-RPIM is very accurate and stable for fracture mechanics problems.
Resumo:
This paper presents a comprehensive study to find the most efficient bitrate requirement to deliver mobile video that optimizes bandwidth, while at the same time maintains good user viewing experience. In the study, forty participants were asked to choose the lowest quality video that would still provide for a comfortable and long-term viewing experience, knowing that higher video quality is more expensive and bandwidth intensive. This paper proposes the lowest pleasing bitrates and corresponding encoding parameters for five different content types: cartoon, movie, music, news and sports. It also explores how the lowest pleasing quality is influenced by content type, image resolution, bitrate, and user gender, prior viewing experience, and preference. In addition, it analyzes the trajectory of users’ progression while selecting the lowest pleasing quality. The findings reveal that the lowest bitrate requirement for a pleasing viewing experience is much higher than that of the lowest acceptable quality. Users’ criteria for the lowest pleasing video quality are related to the video’s content features, as well as its usage purpose and the user’s personal preferences. These findings can provide video providers guidance on what quality they should offer to please mobile users.
Resumo:
For the analysis of material nonlinearity, an effective shear modulus approach based on the strain control method is proposed in this paper by using point collocation method. Hencky’s total deformation theory is used to evaluate the effective shear modulus, Young’s modulus and Poisson’s ratio, which are treated as spatial field variables. These effective properties are obtained by the strain controlled projection method in an iterative manner. To evaluate the second order derivatives of shape function at the field point, the radial basis function (RBF) in the local support domain is used. Several numerical examples are presented to demonstrate the efficiency and accuracy of the proposed method and comparisons have been made with analytical solutions and the finite element method (ABAQUS).
Resumo:
Precise identification of the time when a change in a hospital outcome has occurred enables clinical experts to search for a potential special cause more effectively. In this paper, we develop change point estimation methods for survival time of a clinical procedure in the presence of patient mix in a Bayesian framework. We apply Bayesian hierarchical models to formulate the change point where there exists a step change in the mean survival time of patients who underwent cardiac surgery. The data are right censored since the monitoring is conducted over a limited follow-up period. We capture the effect of risk factors prior to the surgery using a Weibull accelerated failure time regression model. Markov Chain Monte Carlo is used to obtain posterior distributions of the change point parameters including location and magnitude of changes and also corresponding probabilistic intervals and inferences. The performance of the Bayesian estimator is investigated through simulations and the result shows that precise estimates can be obtained when they are used in conjunction with the risk-adjusted survival time CUSUM control charts for different magnitude scenarios. The proposed estimator shows a better performance where a longer follow-up period, censoring time, is applied. In comparison with the alternative built-in CUSUM estimator, more accurate and precise estimates are obtained by the Bayesian estimator. These superiorities are enhanced when probability quantification, flexibility and generalizability of the Bayesian change point detection model are also considered.
Resumo:
The draft of the first stage of the national curriculum has now been published. Its final form to be presented in December 2010 should be the centrepiece of Labor’s Educational Revolution. All the other aspects – personal computers, new school buildings, rebates for uniforms and even the MySchool report card – are marginal to the prescription of what is to be taught and learnt in schools. The seven authors in this journal’s Point and Counterpoint (Curriculum Perspectives, 30(1) 2010, pp.53-74) raise a number of both large and small issues in education as a whole, and in science education more particularly. Two of them (Groves and McGarry) make brief reference to earlier attempts to achieve national curriculum in Australia. Those writing from New Zealand and USA will be unaware of just how ambitious this project is for Australia - a bold and overdue educational adventure or a foolish political decision destined to failure, as happened in the later 1970s and the 1990s.
Resumo:
his paper formulates an edge-based smoothed conforming point interpolation method (ES-CPIM) for solid mechanics using the triangular background cells. In the ES-CPIM, a technique for obtaining conforming PIM shape functions (CPIM) is used to create a continuous and piecewise quadratic displacement field over the whole problem domain. The smoothed strain field is then obtained through smoothing operation over each smoothing domain associated with edges of the triangular background cells. The generalized smoothed Galerkin weak form is then used to create the discretized system equations. Numerical studies have demonstrated that the ES-CPIM possesses the following good properties: (1) ES-CPIM creates conforming quadratic PIM shape functions, and can always pass the standard patch test; (2) ES-CPIM produces a quadratic displacement field without introducing any additional degrees of freedom; (3) The results of ES-CPIM are generally of very high accuracy.
Resumo:
Mutations in multiple oncogenes including KRAS, CTNNB1, PIK3CA and FGFR2 have been identified in endometrial cancer. The aim of this study was to provide insight into the clinicopathological features associated with patterns of mutation in these genes, a necessary step in planning targeted therapies for endometrial cancer. 466 endometrioid endometrial tumors were tested for mutations in FGFR2, KRAS, CTNNB1, and PIK3CA. The relationships between mutation status, tumor microsatellite instability (MSI) and clinicopathological features including overall survival (OS) and disease-free survival (DFS) were evaluated using Kaplan-Meier survival analysis and Cox proportional hazard models. Mutations were identified in FGFR2 (48/466); KRAS (87/464); CTNNB1 (88/454) and PIK3CA (104/464). KRAS and FGFR2 mutations were significantly more common, and CTNNB1 mutations less common, in MSI positive tumors. KRAS and FGFR2 occurred in a near mutually exclusive pattern (p = 0.05) and, surprisingly, mutations in KRAS and CTNNB1 also occurred in a near mutually exclusive pattern (p = 0.0002). Multivariate analysis revealed that mutation in KRAS and FGFR2 showed a trend (p = 0.06) towards longer and shorter DFS, respectively. In the 386 patients with early stage disease (stage I and II), FGFR2 mutation was significantly associated with shorter DFS (HR = 3.24; 95% confidence interval, CI, 1.35-7.77; p = 0.008) and OS (HR = 2.00; 95% CI 1.09-3.65; p = 0.025) and KRAS was associated with longer DFS (HR = 0.23; 95% CI 0.05-0.97; p = 0.045). In conclusion, although KRAS and FGFR2 mutations share similar activation of the MAPK pathway, our data suggest very different roles in tumor biology. This has implications for the implementation of anti-FGFR or anti-MEK biologic therapies.