20 resultados para PET BOTTLES
Resumo:
Context: Tumor-induced osteomalacia (TIO) is a rarely diagnosed disorder presenting with bone pain, fractures, muscle weakness, and moderate-to-severe hypophosphatemia resulting from fibroblast growth factor 23-mediated renal phosphate wasting. Tumors secreting fibroblast growth factor 23 are often small and difficult to find with conventional imaging. Objective: We studied the utility of 68Ga-DOTA-octreotate (DOTATATE) somatostatin receptor positron emission tomography (PET)/computed tomography (CT) imaging in the diagnosis of TIO. Design and Setting: A multicenter case series was conducted at tertiary referral hospitals. Patients and Methods: Six patients with TIO diagnosed between 2003 and 2012 in Australia were referred for DOTATATE PET imaging. We reviewed the clinical history, biochemistry, imaging characteristics, histopathology, and clinical outcome of each patient. Results: Each case demonstrated delayed diagnosis despite severe symptoms. DOTATATE PET/CT imaging demonstrated high uptake and localized the tumor with confidence in each case. After surgical excision, there was resolution of clinical symptoms and serum phosphate, except in one patient who demonstrated residual disease on PET/CT. All tumors demonstrated high somatostatin receptor subtype 2 cell surface receptor expression using immunohistochemistry. Conclusions: In patients with TIO, DOTATATE PET/CT can successfully localize phosphaturic mesenchymal tumors and may be a practical first step in functional imaging for this disorder. Serum phosphate should be measured routinely in patients with unexplained muscle weakness, bone pain, or stress fractures to allow earlier diagnosis of TIO. - See more at: http://press.endocrine.org/doi/abs/10.1210/jc.2012-3642#sthash.eXD0CopL.dpuf
Resumo:
Localised prostate cancer is a heterogenous disease and a multi-modal approach is required to accurately diagnose and stage the disease. Whilst the use of magnetic resonance imaging (MRI) has become more common, small volume and multi-focal disease are oft en diffi cult to characterise. Prostate specifi c membrane antigen is a cell surface protein, which is expressed in nearly all prostate cancer cells. Its expression is signifi cantly higher in high grade prostate cancer cells. In this study, we compare multi-parametric magnetic resonance imaging and 68-Gallinium-PSMA PET with whole-mount pathology of the prostate to evaluate the applicability of multiparameteric (MP) MRI and 68Ga-PSMA PET in detecting and locating tumour foci in patients with localised prostate cancer.
Resumo:
Introduction Many bilinguals will have had the experience of unintentionally reading something in a language other than the intended one (e.g. MUG to mean mosquito in Dutch rather than a receptacle for a hot drink, as one of the possible intended English meanings), of finding themselves blocked on a word for which many alternatives suggest themselves (but, somewhat annoyingly, not in the right language), of their accent changing when stressed or tired and, occasionally, of starting to speak in a language that is not understood by those around them. These instances where lexical access appears compromised and control over language behavior is reduced hint at the intricate structure of the bilingual lexical architecture and the complexity of the processes by which knowledge is accessed and retrieved. While bilinguals might tend to blame word finding and other language problems on their bilinguality, these difficulties per se are not unique to the bilingual population. However, what is unique, and yet far more common than is appreciated by monolinguals, is the cognitive architecture that subserves bilingual language processing. With bilingualism (and multilingualism) the rule rather than the exception (Grosjean, 1982), this architecture may well be the default structure of the language processing system. As such, it is critical that we understand more fully not only how the processing of more than one language is subserved by the brain, but also how this understanding furthers our knowledge of the cognitive architecture that encapsulates the bilingual mental lexicon. The neurolinguistic approach to bilingualism focuses on determining the manner in which the two (or more) languages are stored in the brain and how they are differentially (or similarly) processed. The underlying assumption is that the acquisition of more than one language requires at the very least a change to or expansion of the existing lexicon, if not the formation of language-specific components, and this is likely to manifest in some way at the physiological level. There are many sources of information, ranging from data on bilingual aphasic patients (Paradis, 1977, 1985, 1997) to lateralization (Vaid, 1983; see Hull & Vaid, 2006, for a review), recordings of event-related potentials (ERPs) (e.g. Ardal et al., 1990; Phillips et al., 2006), and positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) studies of neurologically intact bilinguals (see Indefrey, 2006; Vaid & Hull, 2002, for reviews). Following the consideration of methodological issues and interpretative limitations that characterize these approaches, the chapter focuses on how the application of these approaches has furthered our understanding of (1) selectivity of bilingual lexical access, (2) distinctions between word types in the bilingual lexicon and (3) control processes that enable language selection.
Resumo:
This combined PET and ERP study was designed to identify the brain regions activated in switching and divided attention between different features of a single object using matched sensory stimuli and motor response. The ERP data have previously been reported in this journal [64]. We now present the corresponding PET data. We identified partially overlapping neural networks with paradigms requiring the switching or dividing of attention between the elements of complex visual stimuli. Regions of activation were found in the prefrontal and temporal cortices and cerebellum. Each task resulted in different prefrontal cortical regions of activation lending support to the functional subspecialisation of the prefrontal and temporal cortices being based on the cognitive operations required rather than the stimuli themselves.